Nanotechnology Division Department of ECE

think • innovate • transform

Periyar Nagar, Vallam Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660

Web: www.pmu.edu

Email: <u>headnano@pmu.edu</u>

CURRICULUM & SYLLABUS

(Based on Outcome Based Education)

For

M.Tech. NANOTECHNOLOGY (Integrated)

(REGULAR – 5 Years)

Semester I to X

Regulation: 2015, 2016, 2017

Head /Nanotech (Dr. D. Kumar) HOD/ECE (Dr. V. Violet Juli) Dean FET (Dr. R. Jayanthi) Dean Academics (Dr. P.K. Srividhya)

PERIYAR MANIAMMAI UNIVERSITY

Vision		To be a University of global dynamism with excellence in knowledge and innovation ensuring social responsibility for creating an egalitarian society.
	UM1	Offering well balanced programmes with scholarly faculty and state-of-art facilities to impart high level of knowledge.
Mission	UM2	Providing student - centred education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.
WIISSION	UM3	Involving progressive and meaningful research with concern for sustainable development.
	UM4	Enabling the students to acquire the skills for global competencies.
	UM5	Inculcating Universal values, Self respect, Gender equality, Dignity and Ethics.

Core Values

- 1. Student centric vocation
- 2. Academic excellence
- 3. Social Justice, equity, equality, diversity, empowerment, sustainability
- 4. Skills and use of technology for global competency.
- 5. Continual improvement
- 6. Leadership qualities.
- 7. Societal needs
- 8. Learning, a life long process
- 9. Team work
- 10. Entrepreneurship for men and women
- 11. Rural development
- 12. Basic, Societal, and applied research on Energy, Environment, and Empowerment.

NANOTECHNOLOGY DIVISION

Vision		To be a pioneer division in offering Nanotechnology education and research with special emphasis on Energy, Environment and Health which would help to serve industry and society for developing cost effective and useful means
	DM1	To offer UG, PG and Research Programmes in Nano Technology
Mission	DM2	To incorporate innovative teaching learning methods and teaching aids
	DM3	To nurture requirements of the emerging industrial needs to the students
	DM4	To cultivate the spirit of Entrepreneurship
	DM5	To explore solutions via Nano for the needs of society

Table: 1 Mapping of University Mission (UM) and Department Mission (DM)

	DM1	DM2	DM3	DM4	DM5	Total
UM1	3	2	2	2	2	11
UM2	2	2	2	2	2	10
UM3	2	2	2	2	2	10
UM4	2	1	1	1	1	6
UM5	1	0	1	0	0	2

1-Low 2- Medium 3 – High

PROGRAMME EDUCATIONAL OBJECTIVES

Based on the mission of the department, the programme educational objectives is formulated as

PEO1	To strengthen the application of fundamental knowledge in Mathematics, Science,
	Engineering and Technology for the benefit of mankind $(GA - 1, 2)$.
PEO2	To enhance the technical competence of identifying, analyzing and creating appropriate
	engineering solutions. So that the graduates find opportunities in industries, research
	institutions, etc. including entrepreneurship $(GA - 3, 4, 5, 9)$.
PEO3	To cultivate the habit of lifelong learning and working as a member of the team for
	successful career and life (GA – 9,10,11,12)
PEO4	To impart awareness of social responsibilities for becoming a responsible citizen. (GA -
	6,7,8)

Mapping of Department Mission (DM) with Program Educational Objectives (PEOs)

	DM1	DM2	DM3	DM4	DM5
PEO1	3	0	1	1	
PEO2	3	1	2	2	2
PEO3	2	1	1	1	1
PEO4	_	-	1	2	2
	8	2	5	6	5
	3	1	2	2	2

1 - Low Relation

2 - Medium Relation

3 – High Relation

GRADUATE ATTRIBUTES

- 1. <u>Engineering knowledge:</u> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. <u>Problem analysis:</u> Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. <u>Conduct investigations of complex problems:</u> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. <u>Modern tool usage:</u> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. <u>The engineer and society:</u> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. <u>Environment and sustainability:</u> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. <u>Ethics:</u> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. <u>Communication</u>: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. <u>Life-long learning</u>: Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM OUTCOMES

Г

PO 1	To provide knowledge and understanding of the key principles of nanotechnology including the relationship between Nano and various sciences, mathematics and Engineering sciences
PO 2	To expose analysis and design techniques and of details of new concepts and technologies relevant to the area of nano.
PO 3	To equip on methods and processes involved in the development and evaluation of different kinds of Nanomaterials and products
PO 4	To equip scientific and intellectual tools required to define and formulate research problems, and to detail the methodologies needed to address them
PO 5	To equip the scientific and intellectual tools required to design and analyze key physics/chemical/biological/engineering processes related to nanotechnology
PO 6	To provide a wide range of intellectual, practical and transferable skills that will allow students to develop careers in nanotechnology research, industry and other professional areas of the economy
PO 7	To develop deep knowledge of nanotechnology applications in society and especially in health/environment/energy
PO 8	To expose industrial designs and processes and to innovations in the nanotechnology industry
PO 9	To develop deep knowledge of standards and the nanotechnology commercial environments and standardisation processes and to be able to contribute to such processes through appreciation of their contexts, economic and regulatory drivers and limitations
PO 10	To provide knowledge and skills to allow for independent learning, individually and/or within a group.
PO 11	To equip on global understanding of the impacts and issues regarding nanotechnology and applications
PO 12	To become a responsible citizen of the society
	PROGRAM SPECIFIC OUTCOME
PSO 1	Knowledge and generation of intellectual capital (Paper, poster, presentation, patent etc) in the areas of Nano architecture, Nanomaterials, Nanosystems, and their encompassing applications
PSO 2	Ability to identify tailor made Nano applications for Local and Societal needs by (a) Improving efficiency of existing systems by developing innovative low cost solutions (b) New product development

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
PO1	3	1	0	0	1	0	0	0	0	0	0	0
PO2	1	3	1	1	1	0	0	0	0	0	0	0
PO3	1	1	3	1	1	0	0	0	0	0	0	0
PO4	1	1	1	3	1	0	0	0	0	0	0	0
PO5	1	1	1	1	3	0	0	0	0	0	0	0
PO6	1	1	1	1	1	3	0	0	0	0	0	0
PO7	1	1	1	1	1	1	3	1	0	0	0	0
PO8	0	0	0	0	0	1	1	3	1	0	0	0
PO9	0	0	0	0	0	0	0	0	3	1	0	0
PO10	0	0	0	0	0	0	0	0	1	3	1	0
PO11	1	1	1	0	1	0	0	0	0	0	3	0
PO12	1	1	1	1	1	0	0	0	0	0	0	3
PSO1	1	0	1	1	2	1	0	1	1	3	2	2
PSO2	0	0	3	0	0	3	3	0	0	0	2	1

Mapping of Program Outcomes (POs) with Graduate Attributes (GAs)

1- Low Relation

2 - Medium Relation

3 – High Relation

CURRICULUM

REGULATIONS 2015- REVISION 2

(Applicable to the students admitted from the Academic year 2015–2020)

SEMESTER I

Subject code	Subject Title		С	redits	5	Hours						
		L	Т	Р	Total	L	Т	Р	S.S	Total		
XMA101	Algebra, Differential Calculus and their applications	3	1	0	4	3	2	0	0	5		
XEM102	Engineering Mechanics	3	1	0	4	3	2	0	0	5		
XBE103	Electrical and Electronics Engineering Systems	3	1	1	5	3	2	2	0	7		
XAP104	Applied Physics	3	1	1	5	3	2	2	0	7		
XGS105	Study skills and Language Laboratory	1	0	0	1	1	0	2*	0	3		
XUM106	Human Ethics, Values, Rights and Gender Equality	1	0	0	1	1	0	0	2*	3		
	Total	14	4	2	20	14	8	6	2	30		

*Non – credit hours

Total Credits – 20

SEMESTER II

Subject code	Subject Title		C	redit	ts	Hours				
		L	Т	Р	Total	L	Т	Р	Total	
XMA201	Calculus and Laplace Transforms	3	1	0	4	3	2	0	5	
XCP202	Computer Programming	3	0	1	4	3	0	2	5	
XBW203	Mechanical and Civil Engineering Systems	3	1	1	5	3	2	2	7	
XAC204	Applied Chemistry	3	1	1	5	3	2	2	7	
XEG205	Engineering Graphics	2	0	1	3	2	0	2	4	
XGS206	Speech Communication	1	0	0	1	1	0	2*	3	
	Total	15	3	4	22	15	6	10	31	
*Non – credit hours Total Credits – 22										

SEMESTER III

course code	Course Name		ts		Hours					
		L	Т	Р	Total	L	Т	Р	S.S	Total
XMA301	Transforms and Partial Differential Equations /Discrete Mathematics	3	1	0	4	3	2	0	0	5
XNT302	Introduction to Nanotechnology	3	1	1	5	3	2	2	0	7
XNT303	Biology for Engineers	3	1	1	5	3	2	2	0	7
XNT304	Fluid Mechanics	3	1	0	4	3	2	0	0	5
OE-1	Open Elective- I	3	0	0	3	3	0	0	0	3
XEP306	Entrepreneurship Development and Management	2	0	0	2	2	0	0	0	2
XGS307	Interpersonal Communication	0	1	0	1	0	1	0	2*	3
XNT308	In Plant Training	0	0	0	1	0	0	0	0	0
	Total	17	5	2	25	18	9	4	2	33

*Non – credit hours

Total Credits – 25

SEMESTER IV

Course code	Course Name		C	redi	ts					
		L	Т	Р	Total	L	Т	Р	S.S	Total
XRP401	Random Processes	2	1	0	3	2	2	0	0	4
XUM402	Environmental Science and Engineering	3	0	0	3	3	0	0	0	3
XNT403	Principles of Chemical Engineering	3	1	1	5	3	2	2	0	7
XNT404	Nano Applications	3	0	0	3	3	0	0	0	3
XMS405	Materials Science	3	1	0	4	3	1	0	0	4
XNT406	Nanosystems and their Design	3	1	1	5	3	2	2	0	7
XGS407	Technical Communication	0	1	0	1	0	1	0	2*	3
	Total	17	5	2	24	17	8	4	2	31

*Non – credit hours

Total Credits – 24

In-plant training during vocation for 30 days. Credits will be given only in Fifth semester.

SEMESTER V

Course Code	Course Name	Credits Hours								
		L	Т	Р	Total	L	Т	Р	S.S	Total
XNT501	Quantum Mechanics for Engineers	3	1	0	4	3	2	0	0	5
XNT502	Nanomaterials Fabrication Techniques- I	3	0	1	4	3	0	2	0	5
OE – II	Open Elective –II	3	0	0	3	3	0	0	0	3
XNT504	Nanomaterials Characterization Techniques- I	3	0	1	4	3	0	2	0	5
XNT505	Engineering Thermodynamics	3	1	0	4	3	2	0	0	5
XNT506*	Elective (Core) –I	2	0	1	3	2	0	2	0	4
XGS507	Business Communication	1	0	0	1	1	0	2	0	3
XNT508	In Plant Training	0	0	0	1	0	0	0	0	0
	Total	18	2	3	24	18	4	8	0	30

Total Credits – 24

SEMESTER VI

Course code	Course Name	Credits				Hours						
		L	Т	Р	Total	L	Т	Р	S.S	Total		
XNT601	Total Quality Management	3	0	0	3	3	0	0	0	3		
XNT602	Colloids and surfaces Engineering	3	0	1	4	3	0	2	0	5		
XNT603	Nanomaterials Fabrication Techniques- II	3	0	1	4	3	0	2	0	5		
XNT604	Nanomaterials Characterization Techniques- II	3	1	1	5	3	2	2	0	7		
XNT605*	Elective (Core) – II	2	0	1	3	2	0	2	0	4		
XNT606*	Elective (Core) – III	2	0	1	3	2	0	2	0	4		
XGS607	Academic Writing	0	0	0	0	0	0	0	2*	2*		
	Total	16	1	5	22	16	2	10	2	30		

Total Credits - 22

In-plant training during vocation for 45 days. Credits will be given only in Eighth semester.

SEMESTER VII

Course Code	Course Name	Credits Hours								
		L	Т	Р	Total	L	Т	Р	S.S	Total
XNT701	Cyber security	3	0	0	3	3	0	0	0	3
XNT702	Health and safety issues of Nanotechnology	3	0	0	3	3	0	0	0	3
XNT703	Nano composites	3	1	1	5	3	2	2	0	7
OE –III	Open Elective – III	3	0	0	3	3	0	0	0	3
XNT705*	Elective (Core) – IV	2	0	1	3	2	0	2	0	4
XNT706*	Elective (Core) – V	2	0	1	3	2	0	2	0	4
XNT707	Project Theme – I	0	0	0	0	0	0	0	2	2
XNT708	In Plant Training	0	0	0	1	0	0	0	0	0
	Total	16	1	3	21	16	2	6	2	26

Total Credits-21

SEMESTER VIII

Course	Course Name	Credits				Hours						
Code		L	Т	Р	Total	L	Т	Р	S.S	Total		
OE-IV	Open Elective – IV	3	0	0	3	3	0	0	0	3		
XNT802*	Elective (Core) – VI	2	0	1	3	2	0	2	0	4		
XNT803	Career Development Skills	0	0	0	0	0	0	0	2*	2		
XNT804	MEMS and NEMS	3	1	0	4	3	2	0	0	5		
XNT805	Surface Plasmon Resonance	3	1	1	5	3	2	2	0	7		
XNT806	Mini Project	0	0	0	4	0	0	4	0	4		
XNT807	Project Theme – II	0	0	0	0	0	0	0	2	2		
OE-V	Open Elective – V	3	0	0	3	3	0	0	0	3		
	Total	14	2	2	22	14	4	8	2	30		

Total Credits - 22

SEMESTER IX

Course code	Course Name		C	Credit	S		Hours				
		L	Т	Р	Total	L	Т	Р	S.S	Total	
XNT901	Project Work – Phase I	0	0	0	8	0	0	0	0	0	
	Total	0	0	0	8	0	0	0	0	0	

Total Credits - 8

SEMESTER X

Course code	Course Name	Credits								
		L	Т	Р	Total	L	Т	Р	S.S	Total
XNT1001	Project Work – Phase II	0	0	0	12	0	0	0	0	0
	Total	0	0	0	12	0	0	0	0	0

Total Credits - 12

Grant Total Credits: 200

LIST OF CORE ELECTIVES

CORE ELECTIVES SET-I

	Name of the Course	Credits					Hours						
Sub. Code	Name of the Course	L	Т	Р	Total	L	Т	P	S.S	Total			
XNT506A	Emerging tools for Biology and Medicine	2	0	1	3	2	0	2	0	4			
XNT506B	Enzyme Technology	2	0	1	3	2	0	2	0	4			
XNT506C	Electric and Electronic Circuits	2	0	1	3	2	0	2	0	4			
XNT506D	Mechanical Systems Design	2	0	1	3	2	0	2	0	4			
XNT 507E	Mechanics of Materials	2	0	1	3	2	0	2	0	4			

CORE ELECTIVES SET-II

	Name of the Course	Credits					Hours						
Sub. Code	Name of the Course	L	Т	Р	Total	L	Т	Р	S.S	Total			
XNT605A	Nano-Physics	2	0	1	3	2	0	2	0	4			
XNT605B	Molecular assembler –Molecular modelling	2	0	1	3	2	0	2	0	4			
XNT605C	Nano-Sensors, Nano-actuators and Nano-probes	2	0	1	3	2	0	2	0	4			
XNT605D	Nanorobotics	2	0	1	3	2	0	2	0	4			
XNT605E	Nano-Optics and Nano-Photonics	2	0	1	3	2	0	2	0	4			

CORE ELECTIVES SET-III

	Name of the Course	Credits					Hours						
Sub. Code	Name of the Course	L	Т	Р	Total	L	Т	Р	S.S	Total			
XNT606A	Nanostructured Molecular Architectures	2	0	1	3	2	0	2	0	4			
XNT606B	Nanophotonics for Biotechnology and Nanomedicine	2	0	1	3	2	0	2	0	4			
XNT606C	Nano-Spintronics	2	0	1	3	2	0	2	0	4			
XNT606D	Nanomaterials and photocatalytic nanoparticles for water/air detoxification	2	0	1	3	2	0	2	0	4			

CORE ELECTIVES SET-IV

	Name of the Course	Credits					Hours						
Sub. Code	Name of the Course	L	Т	Р	Total	L	Т	Р	S.S	Total			
XNT705A	Encapsulation Techniques	2	0	1	3	2	0	2	0	4			
XNT705B	Lithographic techniques	2	0	1	3	2	0	2	0	4			
XNT705C	Self Assembly Techniques	2	0	1	3	2	0	2	0	4			
XNT705D	Nano in Wireless Communications	2	0	1	3	2	0	2	0	4			
XNT705E	Optimization Techniques	2	0	1	3	2	0	2	0	4			

CORE ELECTIVES SET-V

	Name of the Course	Credits					Hours						
Sub. Code	Name of the Course	L	Т	Р	Total	L	Т	Р	S.S	Total			
XNT706A	MEMS and NEMS Fabrication	2	0	1	3	2	0	2	0	4			
XNT706B	Nanocoatings	2	0	1	3	2	0	2	0	4			
XNT706C	Thin Film	2	0	1	3	2	0	2	0	4			
XNT706D	Nanoscaffold and Characterization Techniques	2	0	1	3	2	0	2	0	4			
XNT706E	Nano & Shockwaves	2	0	1	3	2	0	2	0	4			

CORE ELECTIVES SET- VI

Sub. Code	Name of the Course	L	Т	Р	С
XNT803A	Graphene Nanotechnology	2	0	1	3
XNT803B	Carbon Nanotube	2	0	1	3
XNT803C	Fullerene	2	0	1	3
XNT803D	Quantom Dot	2	0	1	3
XNT803E	Polymeric Carrier	2	0	1	3
XNT803F	Lignocelluloses Biomass	2	0	1	3

OPEN ELECTIVES

Sub. Code	Name of the Course	L	Т	Р	С	Н
XNTOE 1	Introduction to Nanotechnology	3	0	0	3	3
XNTOE 2	Nano Applications	3	0	0	3	3
XNTOE3	Nanomaterials	3	0	0	3	3

SYLLABUS I SEMESTER

COURSE	CODE	XMA 101	L	Т	Р	С
COURSE	NAME	ALGEBRA, DIFFERENTIAL CALCULUS AND THEIR APPLICATIONS	3	1	0	4
PREREQ	UISITES	Basic concepts of Matrices, Numbers, Differentiation and Integration	L	Т	Р	н
C:P:A		3:0:0	3	2	0	5
COURSE	OUTCOMES	DOMAIN		LE	VEL	
CO1	<i>Explain</i> the Properties of eigen values and eigen vectors of the matrices, <i>Make Use of</i> orthogonal and similarity transformation and <i>Construct</i> the quadratic form to Canonical form	Cognitive	Und Apj		nding	7
CO2	Define and Find the radius and circle of curvature in cartesian and polar coordinates and to Explain evolutes and envelopes.	Cognitive	Remembering Understanding			
CO3	<i>Explain</i> the convergence of series of positive terms, alternating series, and power series using tests of convergence.	Cognitive	Understanding			
CO4	<i>Find</i> total and partial derivatives, Taylor series expansions of functions and the extremum of functions and their applications.	Cognitive	Remembering			
CO5	<i>Solve</i> the linear equations of second and higher order with constant and variable coefficients and simultaneous first order differential equations and to <i>Apply</i> Method of variation of parameters to <i>Solve</i> the differential equation.	Cognitive	Apj	oly		
UNIT I	MATRICES					1
Hamilton Orthogona	theorem (excluding proof) - Similarit theorem (excluding proof) - Similarit theorem transformation of a symmetric mate form by Orthogonal transformation.	y transformation (Concept only) -	Ort	hogor	nal ma	atrix

UNIT II	GEOMETRICAL APPLICATIONS O	DF DIFFEREN	TIAL	15
	CALCULUS			
	Cartesian and polar co-ordinates - Centre			cle of curvature –
	evolutes - Envelopes - Properties of envel	lopes and evolute	es.	
UNIT III	INFINITE SERIES			15
	Convergence of series - General prop			
0	(Comparison test, Integral test, Compar			
	heorems and problems only) – Alternating		1	U U
	conditional convergence - Power Series	- Convergence	of exponentia	l, logarithmic and
	es (Simple problems only)		I	
UNIT IV	FUNCTIONS OF SEVERAL VARIA			15
	two variables – Partial derivatives – Total		• 1	
	- Constrained maxima and minima	– Lagrange's 1	Multiplier me	ethod – Jacobian
Determinants				
UNIT V	ORDINARY DIFFERENTIAL EQUA	TIONS AND		15
	APPLICATIONS			
-	ons of second and higher order with c			
• • •				
•	uations) – Simultaneous first order linear	-	onstant coeffic	cients – Method of
•	uations) – Simultaneous first order linear or arameters - Applications to electrical circu	it problems.		
•		it problems.	TUTORIA	L TOTAL
variation of p		it problems.		
variation of particular variation variation of particular variation of particular variation variatio variatio variatio variatio variatio variati	arameters - Applications to electrical circui	it problems. LECTURE 45	TUTORIA 30	L TOTAL
variation of particular of par	arameters - Applications to electrical circui	it problems. LECTURE 45	TUTORIA 30	L TOTAL
variation of particular TEXT 1. Grewa Public	arameters - Applications to electrical circuit I, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007.	it problems. LECTURE 45 40 th Edition, Kl	TUTORIA 30	L TOTAL 75
TEXT 1. Grewa Public 2. Kreys	arameters - Applications to electrical circus I, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics	it problems. LECTURE 45 40 th Edition, Kl	TUTORIA 30	L TOTAL 75
TEXT 1. Grewa Public 2. Kreys Son(As	arameters - Applications to electrical circuit II, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001.	it problems. LECTURE 45 40 th Edition, Kl	TUTORIA 30	L TOTAL 75
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC	arameters - Applications to electrical circuit I, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition	TUTORIA 30 nanna , John Wiley a	L TOTAL 75 and
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N	arameters - Applications to electrical circuit II, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES .P and Narayana lyengar, Engineering Mathematic	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition	TUTORIA 30 nanna , John Wiley a	L TOTAL 75 and
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N (P) Lto	arameters - Applications to electrical circuit II, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES .P and Narayana Iyengar, Engineering Mathematics I, New Delhi, 2003.	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition thematics, Laxm	TUTORIA 30 nanna , John Wiley a i Publications	L TOTAL 75 and
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N (P) Ltc 2. Veerat	Arameters - Applications to electrical circuit I, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES . P and Narayana Iyengar, Engineering Mar I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth H	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition thematics, Laxm	TUTORIA 30 nanna , John Wiley a i Publications	L TOTAL 75 and
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N (P) Ltc 2. Veerau Publis	Arameters - Applications to electrical circuit II, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES I.P and Narayana Iyengar, Engineering Mathematics I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth H hing Company Ltd, New Delhi, 2005.	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M	TUTORIA 30 nanna , John Wiley a i Publications IcGraw Hill	L TOTAL 75 and
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N (P) Ltc 2. Veeraa Publis 3. Kanda	Arameters - Applications to electrical circuit II, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics Sia) Ltd, Singapore, 2001. ES . P and Narayana Iyengar, Engineering Mathematics I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth H hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering N	TUTORIA 30 nanna , John Wiley a i Publications IcGraw Hill	L TOTAL 75 and
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N (P) Ltc 2. Veera Publis 3. Kanda Volun	Arameters - Applications to electrical circuit al, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES . P and Narayana lyengar, Engineering Mathematics I, New Delhi, 2003. rajan T, Engineering Mathematics Fourth H hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I the I, II and III, S. Chand & Co, New Delhi,	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering M , 2005.	TUTORIA 30 nanna , John Wiley a i Publications IcGraw Hill Mathematics	L TOTAL 75
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N (P) Ltc 2. Veerau Publis 3. Kanda Volum 4. Venka	Arameters - Applications to electrical circuit II, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES .P and Narayana lyengar, Engineering Mathematics rajan T, Engineering Mathematics Fourth H hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I he I, II and III, S. Chand & Co, New Delhi, taraman M. K, Engineering Mathematics,	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering M , 2005. Volume I and II	TUTORIA 30 nanna , John Wiley a i Publications IcGraw Hill /athematics Revised enlar	L TOTAL 75
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N (P) Ltc 2. Veeraa Publis 3. Kanda Volum 4. Venka Fourth	Arameters - Applications to electrical circuit I, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics Sia) Ltd, Singapore, 2001. ES . P and Narayana Iyengar, Engineering Mathematics rajan T, Engineering Mathematics Fourth H hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I the I, II and III, S. Chand & Co, New Delhi, taraman M. K, Engineering Mathematics, a Edition, The National Publishing Company	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering M , 2005. Volume I and II	TUTORIA 30 nanna , John Wiley a i Publications IcGraw Hill /athematics Revised enlar	L TOTAL 75
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N (P) Ltc 2. Veerau Publis 3. Kanda Volum 4. Venka	Arameters - Applications to electrical circuit I, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics Sia) Ltd, Singapore, 2001. ES . P and Narayana Iyengar, Engineering Mathematics rajan T, Engineering Mathematics Fourth H hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I the I, II and III, S. Chand & Co, New Delhi, taraman M. K, Engineering Mathematics, a Edition, The National Publishing Company	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering M , 2005. Volume I and II	TUTORIA 30 nanna , John Wiley a i Publications IcGraw Hill /athematics Revised enlar	L TOTAL 75
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N (P) Ltc 2. Veerat Publis 3. Kanda Volun 4. Venka Fourth E REFEREN	Arameters - Applications to electrical circuit I, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES .P and Narayana lyengar, Engineering Mathematics .P and Narayana lyengar, Engineering Mathematics .a and N. K. Engineering Mathematics, 1 .a Edition, The National Publishing Comparison 	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering M , 2005. Volume I and II ny, Chennai, 200	TUTORIA 30 nanna , John Wiley a i Publications IcGraw Hill /athematics Revised enlar	L TOTAL 75
TEXT 1. Grewa Public 2. Kreys Son(As REFERENC 1. Bali N (P) Ltc 2. Veeraa Publis 3. Kanda Volum 4. Venka Fourth E REFEREN www.npta Advar	Arameters - Applications to electrical circuit al, B.S. Higher Engineering Mathematics, 4 ation, Delhi, 2007. zig, E, Advanced Engineering Mathematics sia) Ltd, Singapore, 2001. ES 7.P and Narayana Iyengar, Engineering Mathematics and Narayana Iyengar, Engineering Mathematics rajan T, Engineering Mathematics Fourth H hing Company Ltd, New Delhi, 2005. samy P., Thilagavathy K, and Gunavathy I he I, II and III, S. Chand & Co, New Delhi, taraman M. K, Engineering Mathematics, Edition, The National Publishing Compan ICES	it problems. LECTURE 45 40 th Edition, Kl s, Eighth Edition thematics, Laxm Edition, Tata – M K, Engineering M , 2005. Volume I and II ny, Chennai, 200 ha Panigrahi	TUTORIA 30 nanna , John Wiley a i Publications IcGraw Hill Mathematics Revised enlar 4.	L TOTAL 75

TABLE 1: CO VS PO Mapping

	PO1	PO2	PO3	PO4	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3	2			2						1		2
CO 2	3	1									1		1
CO 3	3	1									1		1
CO 4	3	2									1		1
CO 5	3	2			1						1		2
	15	8	0	0	3	0	0	0	0	0	5	0	7

COURSE C	CODE	XEM102	L	Т	Р	С	
COURSE N	IAME	ENGINEERING MECHANICS	3	1	0	4	
PREREQU	ISITES	Nil	L	Т	Р	H	
C:P:A		2.6:0.2:0.2	3	2	0	5	
COURSE C	OUTCOMES	DOMAIN	LEV	EL.			
CO1	<i>Identify</i> and <i>choose</i> various types of loading and support conditions that act on structural and dynamic systems.	Cognitive	(Understand)				
CO2	<i>Apply</i> pertinent mathematical, physical and engineering mechanics principles to the system to predict the problem.	Cognitive	Rem	Rem, Ap & Ev			
CO3	Apply knowledge on the concepts of centroid and moment of inertia of various sections and solids.	Cognitive& p	Rem	, Ap&	żΕv		
CO4	<i>Model</i> the problem using free-body diagrams and accurate equilibrium equations and finding the solution.	Cognitive	Anal	lyze			
C05	Develop concepts of friction, rigid body kinematics and dynamics with an emphasis on the modeling and analysis and solving simple dynamic problems involving kinematics and momentum.	Cognitive& p	Rem	, Ap&	Ev		
UNIT I	BASICS AND STATICS OF PART	TICLES				15	
Hamilton the Orthogonal	s and Eigenvectors of a real matrix –Pro eorem (excluding proof) - Similarity tra transformation of a symmetric matrix t orm by Orthogonal transformation.	ansformation (Concept onl	ly) - Oi	rthogo	nal ma	atrix	
UNIT II	EQUILIBRIUM OF RIGID BODI	ES				15	
	Cartesian and polar co-ordinates – Cer d evolutes – Envelopes – Properties of e		re – Cir	cle of	curva	ture -	
UNIT III	PROPERTIES OF SURFACES AN	ND SOLIDS				1	
	Cartesian and polar co-ordinates – Cer d evolutes – Envelopes – Properties of e		re – Cir	cle of	curva	ture -	
UNIT IV	DYNAMICS OF PARTICLES					15	
	f two variables – Partial derivatives – T a – Constrained maxima and minin s.	•	-	-			

UNIT V	ELEMENTS OF RIGID BODY DY FRICTION)		15	
Legendre's e	ions of second and higher order wit quations) – Simultaneous first order line parameters - Applications to electrical cities and the second se	ear equations wi			
		LECTURE	TUTOR	IAL	TOTAL
		45	30		75
TEXT					
2. Krey Ltd,	val, B.S. Higher Engineering Mathemat szig, E, Advanced Engineering Mathem Singapore, 2001.				
2. Krey Ltd, REFERENC 1. Bali I	vszig, E, Advanced Engineering Mathem Singapore, 2001. EES N.P and Narayana lyengar, Engineering	natics, Eighth Ec	lition, John	Wiley a	and Sons(Asia)
 Krey Ltd, REFERENC 1. Bali I Delhi 	vszig, E, Advanced Engineering Mathem Singapore, 2001. CES N.P and Narayana lyengar, Engineering , 2003.	natics, Eighth Ec Mathematics, La	lition, John	Wiley a	nd Sons(Asia) P) Ltd, New
 Krey Ltd, REFERENC 1. Bali I Delhi 2. Veera 	Aszig, E, Advanced Engineering Mathem Singapore, 2001. CES J.P and Narayana Iyengar, Engineering , 2003. Irajan T, Engineering Mathematics Four	natics, Eighth Ec Mathematics, La	lition, John	Wiley a	nd Sons(Asia) P) Ltd, New
 Krey Ltd, REFERENC Bali I Delhi Veera Comp Kand 	vszig, E, Advanced Engineering Mathem Singapore, 2001. CES N.P and Narayana lyengar, Engineering , 2003.	matics, Eighth Ec Mathematics, La rth Edition, Tata	lition, John axmi Publica – McGraw I	Wiley a ations (I Hill Put	P) Ltd, New
 Krey Ltd, REFERENC 1. Bali I Delhi 2. Veera Comp 3. Kand III, S 4. Venk 	Aszig, E, Advanced Engineering Mathem Singapore, 2001. CES N.P and Narayana lyengar, Engineering , 2003. Arajan T, Engineering Mathematics Four bany Ltd, New Delhi, 2005. Asamy P., Thilagavathy K, and Gunavat	natics, Eighth Ec Mathematics, La rth Edition, Tata thy K, Engineerin	lition, John axmi Publica – McGraw I ng Mathema	Wiley a ations (I Hill Put atics Vo	P) Ltd, New blishing blume I, II and
 Krey Ltd, REFERENC 1. Bali I Delhi 2. Veera Comp 3. Kand III, S 4. Venk 	Aszig, E, Advanced Engineering Mathem Singapore, 2001. EES J.P and Narayana lyengar, Engineering , 2003. Analy Ltd, New Delhi, 2005. Asamy P., Thilagavathy K, and Gunavat Chand & Co, New Delhi, 2005. Ataraman M. K, Engineering Mathemati Vational Publishing Company, Chennai,	natics, Eighth Ec Mathematics, La rth Edition, Tata thy K, Engineerin	lition, John axmi Publica – McGraw I ng Mathema	Wiley a ations (I Hill Put atics Vo	P) Ltd, New blishing blume I, II and

Mapping of CO's with PO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	РО 10	PO 11	PO 12	PSO 1	PSO 2
C01	3	3												
CO2	3	3												
CO3	3	3												
CO4	3	3												
CO5	3	3												

1 – Low relation, 2 – Medium relation, 3 – High relation 0- no relation

COURSE (CODE	XBE103	L	Т	Р	С	
COURSE N	JAME	ELECTRICAL AND ELECTRONICS ENGINEERING SYSTEMS (BEE LAB INCLUDED)	3	1	1	5	
PREREQU	ISITES	(222 202 200 202 22)	L	Т	Р	Н	
C:P:A		3:1:0	3	2	2	7	
COURSE (DUTCOMES	DOMAIN	LF	VEI			
CO1	Define, Relate, the fundamentals of electrical parameters and build and explain AC, DC circuits by Using measuring devices	Cognitive Psychomotor	Re Un Me set				
CO2	Define and Explain peration of DCand AC machines.	Cognitive	Re	mem derst			
CO3	<i>Recall, Illustrate,</i> various semiconductor Devices and their applications and <i>displays</i> the input output characteristics of basic semiconductor devices.	Cognitive Psychomotor	Remember Understand Mechanism				
CO4	<i>Relate, Explain,</i> the number systems and logic gates. <i>Construct</i> the different digital circuit.	Cognitive Psychomotor	Remember Understand Origination				
CO5	<i>Label, Outline</i> different types of microprocessors and their applications.	Cognitive	-	mem derst			
UNIT I	FUNDAMENTAL OF DC AND A MEASUREMENTS	AC CIRCUITS,			9+	9+12	
Star/Delta T power and F Parallel Cir	Is of DC– Ohm's Law – Kirchoff' Transformation - Fundamentals of A Power Factor, Phasor Representation of recuit - Operating Principles of Mo and Dynamometer type meters (Watt	C – Average Value, RMS Value, of sinusoidal quantities - Simple So ving coil and Moving Iron Inst	Form eries, trume	Fac Paral nts (tor - lel, S Amn	AC Serie neter	
UNIT II	ELECTRICAL MACHINES				9+	- 6+0	
motors - Bas	n, Principle of Operation, Basic Equat sics of Single Phase Induction Motor Operation of Single Phase Transform	and Three Phase Induction Motor-	Const	ructi	on,	2	
UNIT III	SEMICONDUCTOR DEVICES					- 3+8	
	on of Semiconductors, Construction, le, PNP, NPN Transistors, Field E	-			n Dio	ode -	

				· · · · ·					
		AL ELECTRONICS			9 + 6+10				
	-	• •		gebra, Adders, Subractors	, multiplexer,				
demul	tiplexer, encoder	, decoder, Flipflops, Up/	Down counters, S	bhift Registers.					
		OPROCESSORS			9+ 6+0				
Archit	ecture, 8085, 808	86 - Interfacing Basics: I	Data transfer conc	epts – Simple Programmi	ng concepts				
LIST OF EXPERIMENTS :									
1. Study of Electrical Symbols, Tools and Safety Precautions, Power Supplies.									
2.	Study of Active	e and Passive elements -	- Resistors, Induct	ors and Capacitors, Bread	l Board.				
3.	Verification of	AC Voltage, Current an	d Power in Series	and Parallel connection.					
4.	Testing of DC	Voltage and Current in	series and parallel	resistors which are conne	ected in				
	breadboard by	using Voltmeter, Amme	ter and Multimete	r.					
5.	Fluorescent lan	np connection with chok	te.						
6.	Staircase Wirin	ng.							
7.	Forward and R	everse bias characteristic	cs of PN junction	diode .					
8.	Forward and R	everse bias characteristic	cs of Zener diode						
9.	Input and Outp	out Characteristics of NP	N transistor.						
10.		nd verification of simple							
11.	Construction a	nd verification of adders							
12.	Construction a	nd verification of and su	ibtractions						
		LECTURE	TUTORIAL	PRACTICAL	TOTAL				
		45	30	30	105				
ТЕХТ									
1.Me	tha V.K., 2008. I	Principles of Electronics.	. S.Chand and Cor	mpany.					
2.Ma	lvino, A. P., 200	6. Electronics Principles	. 7 th ed. New Delh	ni: Tata McGraw-Hill.					
3. A.	K. Theraja, B.L	.,TherajaA Text book of	of Electrical Tecl	nology Volume -II					
3.Raj	akamal, 2007. D	igital System-Principle	& Design. 2 nd ed.	Pearson education.					
4.Mo	oris Mano, 1999.	Digital Design. Prentice	Hall of India.						
5.Rar	mesh, S. Gaonka	r, 2000. Microprocessor	Architecture, Prog	gramming and its App	olications				
wit	h the 8085. 4 th ed	l. India: Penram Internat	ional Publications	•					
REFE	CRENCES								
		trical Technology. CBS		ributors.					
2. Sye	d, A. Nasar, 1998	8, Electrical Circuits. Sci	haum Series.						
3. Jaco	ob Millman and O	Christos, C. Halkias, 196	7. Electronics De	vices.New Delhi: McGrav	v-Hill.				
4. Mil	lman, J. andHall	kias, C. C., 1972. Integra	ted Electronics: A	analog and Digital Circuit	s and				
Sys	tems. Tokyo:	McGraw-Hill, Kogakusł	na Ltd.						
5.Moh	ammedRafiquzz	aman, 1999. Microproc	essors - Theory	and Applications: Intel	and Motorola.				
Pren	tice Hall Internat	tional.							
E REI	FERENCES								
		ical Technology (Web C	Course), Prof. N. k	K. De, Prof. T. K. Bhattach	harya and				
	. G. D. Roy, II		,, · · · · -	,	2				
	•		om/Course/2335/H	Basic-Electrical-Technolog	gy#, IISc				
		1							
•	Bangalore. 3. http://nptel.ac.in/Onlinecourses/Nagendra/, Dr. Nagendra Krishnapura , IIT Madras.								
-	-	-	-	trical-technology.html, II	SC Bangalora				
4. DI.		5.// w w w .11pterv10e08.111/2	1012/11/Dasic-elec	uicai-technology.intiin, Il	SC Daligatore				

Table: 1 Mapping of COs with POs:

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO 1	3	3		2	1				1			1		
CO 2	2	3		1	1							1		
CO 3	2	3		2	1				1			1		
CO 4	3	3		3	1				1			1		
CO 5	2	3		1	1							1		
Total	12	15		13	5				3			5		
Scale	3	3		3	1				1			1		
d value														

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No relation, 1-Low relation, 2-Medium relation, 3-High relation

COURSE	E CODE	XAP104 / XAP204	L	Т	P	С			
COURSE	E NAME	APPLIED PHYSICS	3	1	1	5			
PREREC	UISITES	2.8:0.8:0.4	L	Т	Р	Н			
C:P:A		Basic Physics in HSC level	3	2	2	7			
COURSE	EOUTCOMES	DOMAIN LEVEL							
C01	<i>Identify</i> the basics of mechanics, explain	Cognitive:		LEVEL Remember,					
	the principles of elasticity, viscosity and				stand	·			
	determine its significance in engineering	Psychomotor:	Me	echa	nisn	1			
	systems and technological advances.	-							
CO2	<i>Describe</i> the production, propagation,	Cognitive:	Re	mer	nber	,			
	perception & analysis of acoustical wave		An	alyz	ze,				
	and <i>locate</i> basic acoustical problem	Affective:	Re	spoi	nd				
	encountered in constructed buildings.								
CO3	Understand the fundamental phenomena	Cognitive:			stand	l,			
	in optics by measurement and <i>describe</i> the			ply					
	working principle and application of	Psychomotor:			nisn	1			
~ ~ .	various lasers and fibre optics.	Affective:		ceiv					
CO4	Analyse different crystal structures,	Cognitive:			stand	l,			
	<i>discuss</i> and <i>use</i> physics principles of latest			alyz					
	technology by visualizing.	Psychomotor: Affective:			nisn	1			
005				<u>ceiv</u>					
CO5	Develop Knowledge on engineering	Cognitive:	U, App						
UNIT I	materials, its properties and application. MECHANICS ANDPROPERTIES OF M		9+6+12						
	cs: Force - Newton's laws of motion - work and		-	-		1011			
	vation of energy and momentum - Friction.	id energy - impulse and momentu	- 111	lorq	ue -	law			
	Stress - Strain - Hooke's law - Stress stra	in diagram - Classification of el	astic	m	oduli	18 -			
	couple and torque - Torsion pendulum - App								
	nental determination of Young's modulus: Un								
girders.	6	6		0					
0	Coefficient of viscosity - Laminar flow - stre	eamline flow - turbulent flow - Re	eyno	ld's	nun	ıber			
•	le's method.		2						
UNIT II	ACOUSTICS, ULTRASONICS AND SH	HOCK WAVES	9+0	6+0					
Acoustics	s: Classification of sound - Characteristics of	musical sound - Loudness - Webe	er Fe	echn	er la	ıw -			
Decibel -	Absorption coefficient - Reverberation - Rever	everberation time - Sabin's form	ıla (gro	wth	and			
decay) - H	Factors affecting acoustics of buildings (reven	beration time, loudness, focussing	g, ec	ho,	eche	elon			
	sonance and noise) and their remedies.								
Ultrasonics: Production: Magnetostriction and Piezoelectric methods - NDT: Ultrasonic flaw detected									
	aves: Definition of Mach number - Description	on of a shock wave - Characteristi	cs -	Me	thod	s of			
creating shock waves.									
UNIT III OPTICS, LASERS AND FIBRE OPTICS 9+6+12									
	Dispersion- Optical instrument: Spectrometer		x an	d di	sper	sive			
-	a prism- Interference of light in thin films: air			00	1.				
LASER: Introduction - Population inversion -Pumping - Laser action - Nd-YAG laser - CO ₂ laser -									
	23								
	25								

Semiconductor Laser (homojunction) - Applications

Fibre Optics: Principle and propagation of light in optical fibre - Numerical aperture and acceptance angle - Types of optical fibre - Fibre optic communication system

UNIT IV SOLID STATE PHYSICS

9+6+6

Crystal Physics: Lattice - Unit cell - Lattice planes - Bravais lattice - Miller indices - Sketching a plane in a cubic lattice - Calculation of number of atoms per unit cell - Atomic radius - Coordination number - Packing density for SC, BCC, FCC and HCP structures.

Semiconductors: Semiconductor properties - Types of semiconductor - Intrinsic - Extrinsic: P-type and N-type semiconductor - PN junction diode - Biasing - Junction diode characteristics.

UNIT VNOVEL ENGINEERING MATERIALS AND BIOMETRICS9+6+0

Novel Engineering Materials: Introduction - Metallic glasses: Melt spinning technique, properties, applications - Shape Memory Alloys: Transformation temperature, working of SMA, characteristics - Biomaterials: Properties, interaction of biomaterials with tissues, applications - Nano phase materials: Production, properties and applications.

Biometrics: Introduction - definition - instrumentation - devices - advantages

TEXT

- 1. Avadhanulu M. N. and Kshirsagar P. G., "A Text Book of Engineering Physics", 7th Enlarged Revised Edition. S. Chand & Company Ltd., New Delhi, 2005.
- 2. Senthil Kumar G., "Engineering Physics", 2nd Enlarged Revised Edition, VRB Publishers, Chennai, 2003.
- 3. Mani P., "Engineering Physics", Dhanam Publications, Chennai, 2005.

4. Prabu P. and Gayathri P., " Applied Physics", PMU Press, Thanjavur, 2013

REFERENCES

- 1. Gaur R.K. and Gupta S. L., "Engineering Physics", Dhanpat Rai Publishers, New Delhi, 2001.
- 2. Pillai S.O., "Solid State Physics", 5th Edition, New Age International Publication, New Delhi, 2003.

E RESOURCES

NPTEL, Engineering Physics, Prof. M. K. Srivastava, Department of Physics, IIT, Roorkee.

	LABORATORY								
1.	Torsional Pendulum - determination of moment of inertia and rigidity modulus of the given								
	material of the wire.								
2.	Uniform Bending - Determination of the Young's Modulus of the material of the beam.								
3.	Non-Uniform Bending - Determination of the Young's Modulus of the material of the beam.								
4.	Poiseuille's flow - Determination of coefficient of viscosity of the given liquid.								
5.	Spectrometer - Determination of dispersive power of the give prism.								
6.	Spectrometer - Determination of wavelength of various colours in Hg source using grating.								
7.	Air wedge - Determination of thickness of a given thin wire.								
8.	Laser - Determination of wavelength of given laser source and size of the given micro particle								
	using Laser grating.								
9.	Post office Box - Determination of band gap of a given semiconductor.								
10.	PN Junction Diode - Determination of V-I characteristics of the given diode.								

REFERENCE BOOKS

- 1. Srinivasan M. & others, "A text book of Practical Physics", Sultan Chand & Sons, 2001.
- 2. Shukla R.K., "Practical Physics", New Age International Publication, New Delhi, 2011.
- 3. Umayal Sundari AR., "Applied Physics Laboratory Manual", PMU Press, Thanjavur, 2012.

LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
45	30	30	105

Mapping of CO's with PO:

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS1	PS2
CO1	3	2	2	2	1	-	-	-	1	-	-	1		
CO2	3		1		1	-	-	-		-	-	1		
CO3	3	2	2	2	1	-	-	-	1	-	-	1		
CO4	3	2	2	2	1	-	-	-	1	-	-	1		
CO5	3		2			-	-	-		-	-	1		
Total	15	6	9	6	4				3			5		
Scaled to 0,1,2,3 scale	3	2	2	2	1				1			1		

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

	CODE	XGS105	L	Т	P	SS	C
COURSE	NAME	STUDY SKILLS	1	0	0	2	1
PREREQ	UISITES		L	Т	Р	SS	Н
C:P:A		1.8:0.6:0.6	1	0	0	2	3
COURSE	OUTCOMES	DOMAIN		LE	VEL	,	
CO1	<i>Identify</i> different strategies of reading and writing skills.	Cognitive		I	Reme	embe	r
CO2	<i>Revise</i> the library skills in their learning process.	Affective		Ir		alizin lues	g
CO3	<i>Apply</i> different techniques to various types of material such as a novel, newspaper, poem, drama and other reading papers.	Cognitive			Ap	ply	
CO4	<i>Use</i> visual aids to support verbal matters into language discourse.	Cognitive		Unc	lerst	andin	g
CO5	<i>Prepare</i> to face the written exam with confidence and without any fear or tension.	Cognitive Psychomotor			Gu	tandi ided oonse	U
UNIT I	INTRODUCTION TO STUDY SKILLS Skills and Strategies of Learning - Cognitive	Study skills and physic	al eti	udv s	kille	Lib	4
		Study skills and physic	ai su	uuy s	VIII2	, ши	
skills (Hov	v to use Library) familiarization of library fac	ilities by the librarian -					
	v to use Library), familiarization of library factors techniques, how to ransack the library etc.	ilities by the librarian -					
	v to use Library), familiarization of library factors g techniques, how to ransack the library etc.	ilities by the librarian -					asic
cataloguing UNIT II	g techniques, how to ransack the library etc.		fami	liariz	ation	of b	asio
cataloguing UNIT II How to use	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to u	assignments - how to fi	fami nd ou	liariza ut refe	ation	of b	asio
cataloguing UNIT II How to use articles, jou UNIT III	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to u READING RELATED STUDY SKILLS	assignments - how to fi use a dictionary and the	fami nd ou sauru	liariza ut refe	ation	of b	asio ks
cataloguingUNITIIHow to usearticles, jouUNITIIIProcess ofmaterials	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write arnals and other e- learning materials - how to the standard other e- learning materials - how to the standard other e- learning materials and the standard other e- learning materials - how to the standard other e- learning materials	assignments - how to fi use a dictionary and the d varied reading technic	fami nd ou sauru jues -	liariza ut refe	erenc	ce boo	asio sks
cataloguing UNIT II How to use articles, jou UNIT III Process of materials w writing by	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to use the library skilles READING RELATED STUDY SKILLS reading, various types of reading materials and	assignments - how to fi use a dictionary and the d varied reading technic	fami nd ou sauru jues -	liariza ut refe	erenc	ce boo	asic static bks n to ific
cataloguing UNIT II How to use articles, jou UNIT III Process of materials v writing by UNIT IV	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and written by various authors - features of scient renowned authors - note making skills.	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami	fami nd ou sauru jues - liariz	liariza ut refe	erence iliari to	ce boo zatio	asic Soks
cataloguing UNIT II How to use articles, jou UNIT III Process of materials v writing by UNIT IV Process of and note ta	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the urnals and other e- learning materials - how to use the urnals and other e- learning materials - how to use the urnals and other e- learning materials - how to use the urnals and other e- learning materials - how to use the urnals and other e- learning materials - how to use the urnals - how to	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami	fami nd ou sauru jues - liariz	liariza ut refe	erence iliari to	ce boo zatio	asic 5 5 5 5 5 5 5 5 5 5 5 5 5
cataloguingUNITIIHow to usearticles, jouUNITIIIProcess ofmaterialswriting byUNITIVProcess ofand note taUNITV	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write arnals and other e- learning materials - how to the READING RELATED STUDY SKILLS reading, various types of reading materials and written by various authors - features of scient renowned authors - note making skills. WRITING RELATED STUDY SKILLS writing - characteristics of writing - discourse king skills. EXAM PREPARATION SKILLS	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami e analysis - use of visua	fami nd ou sauru jues - liariz	liarization	ation erenc iliari to	ce boo zatio	asic 5 oks n tc ific
cataloguingUNITIIHow to usearticles, jouUNITIIIProcess ofmaterialsvwritingbyUNITIVProcess ofand notetaUNITVAnxietyreal	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the urnals and other e- learning materials - how to use the urnals and other e- learning materials - how to use the urnals and other e- learning materials - how to use the urnals and other e- learning materials - how to use the urnals and other e- learning materials - how to use the urnals - how to	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami e analysis - use of visua	fami nd ou sauru jues - liariz	liarization	ation erenc iliari to	ce boo zatio	asic bks n to ific
cataloguingUNITIIHow to usearticles, jouUNITIIIProcess ofmaterialswriting byUNITIVProcess ofand note taUNITVAnxiety redTEXT	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write arnals and other e- learning materials - how to the READING RELATED STUDY SKILLS reading, various types of reading materials and written by various authors - features of scient renowned authors - note making skills. WRITING RELATED STUDY SKILLS writing - characteristics of writing - discourse king skills. EXAM PREPARATION SKILLS duction skills - familiarization with various typ	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami e analysis - use of visua wes of exam / evaluation	fami nd ou sauru jues - liariz	liarization	ation erenc iliari to	ce boo zatio	asio
cataloguingUNITIIHow to usearticles, jouUNITIIIProcess ofmaterialswriting byUNITIVProcess ofand note taUNITVAnxiety reaTEXTAppropriation	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to the READING RELATED STUDY SKILLS reading, various types of reading materials and written by various authors - features of scient renowned authors - note making skills. WRITING RELATED STUDY SKILLS writing - characteristics of writing - discourse king skills. EXAM PREPARATION SKILLS duction skills - familiarization with various type	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami e analysis - use of visua	fami nd ou sauru jues - liariz l aids techr	liarization	ation erenc iliari to	ce boo zatio	asio
cataloguingUNIT IIHow to usearticles, jouUNIT IIIProcess ofmaterials vwriting byUNIT IVProcess ofand note taUNIT VAnxiety reaTEXTAppropriat1. Nat	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities of reading materials and written by various authors - features of scient renowned authors - note making skills. WRITING RELATED STUDY SKILLS writing - characteristics of writing - discourse king skills. EXAM PREPARATION SKILLS duction skills - familiarization with various type e Chapters/Units from the following textbooks rayanaswamy. Strengthen Your Writing. Orient	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami e analysis - use of visua wes of exam / evaluation	fami nd ou sauru jues - liariz l aids techr 2006	liarization	ation erence iliari to = note	ce boo zatio	asic bks n to ific
cataloguingUNITIIHow to usearticles, jouUNITIIIProcess ofmaterialswwriting byUNITIVProcess ofand note taUNITVAnxiety reeTEXTAppropriat1.Nat2.Sat	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals are areading, various types of reading materials and written by various authors - features of scient renowned authors - note making skills. WRITING RELATED STUDY SKILLS writing - characteristics of writing - discourse king skills. EXAM PREPARATION SKILLS duction skills - familiarization with various type e Chapters/Units from the following textbooks rayanaswamy. Strengthen Your Writing. Orient skilumar, Writing with A Purpose, Champa Tick	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami e analysis - use of visua bes of exam / evaluation t Longman. New Delhi, koo, Oxford University	fami nd ou sauru jues - liariz l aids techr 2006 Press	liarization ut refe	ation erence iliari to s etc	zatio scient	asic bks n to ific
cataloguingUNITIIHow to usearticles, jouUNITIIIProcess ofmaterialswwriting byUNITIVProcess ofand note taUNITVAnxiety reaTEXTAppropriat1.Nan2.San3.Free	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities for research and to write urnals and other e- learning materials - how to use the library facilities of reading materials and written by various authors - features of scient renowned authors - note making skills. WRITING RELATED STUDY SKILLS writing - characteristics of writing - discourse king skills. EXAM PREPARATION SKILLS duction skills - familiarization with various type e Chapters/Units from the following textbooks rayanaswamy. Strengthen Your Writing. Orient	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami e analysis - use of visua wes of exam / evaluation t Longman. New Delhi, koo, Oxford University ford University Press, N	fami nd ou sauru jues liariz l aids techr 2006 Press ew D	liarization ut references at ion cation s, and niques s.2009 Delhi	ation erence iliari to s etc	zatio scient	asic bks n to ific
cataloguingUNITIIHow to usearticles, jouUNITIIIProcess ofmaterialswwriting byUNITIVProcess ofand note taUNITVAnxiety reaTEXTAppropriat1.Nan2.San3.Free	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to use READING RELATED STUDY SKILLS reading, various types of reading materials and written by various authors - features of scient renowned authors - note making skills. WRITING RELATED STUDY SKILLS writing - characteristics of writing - discourse king skills. EXAM PREPARATION SKILLS duction skills - familiarization with various type e Chapters/Units from the following textbooks rayanaswamy. Strengthen Your Writing. Orient sikumar, Writing with A Purpose, Champa Ticleman, Sarah: <i>Study Strategies</i> . New Delhi: Oxfer Viney. <i>Streamline English: Destinations</i> , O	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami e analysis - use of visua wes of exam / evaluation t Longman. New Delhi, koo, Oxford University ford University Press, N	fami nd ou sauru jues liariz l aids techr 2006 Press ew D	liarization ut references at ion cation s, and niques s.2009 Delhi	ation erence iliari to s etc	zatio scient	asic bks n to ific
cataloguingUNITIIHow to usearticles, jouUNITIIIProcess ofmaterialswwriting byUNITIVProcess ofand note taUNITVAnxiety reaTEXTAppropriat1.Nar2.Sas3.Fre4.PetREFERENT	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write urnals and other e- learning materials - how to use READING RELATED STUDY SKILLS reading, various types of reading materials and written by various authors - features of scient renowned authors - note making skills. WRITING RELATED STUDY SKILLS writing - characteristics of writing - discourse king skills. EXAM PREPARATION SKILLS duction skills - familiarization with various type e Chapters/Units from the following textbooks rayanaswamy. Strengthen Your Writing. Orient sikumar, Writing with A Purpose, Champa Ticleman, Sarah: <i>Study Strategies</i> . New Delhi: Oxfer Viney. <i>Streamline English: Destinations</i> , O	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami e analysis - use of visua bes of exam / evaluation t Longman. New Delhi, koo, Oxford University ford University Press, N xford University Press,	fami nd ou sauru jues - liariz l aids techr 2006 Press ew D 1992	liarization ut references - fam cation cation s, and niques 5 5.2009 Delhi	ation erence iliari to s etc	zatio scient	asic bks n to ific
cataloguingUNIT IIHow to usearticles, jouUNIT IIIProcess ofmaterials vwriting byUNIT IVProcess ofand note taUNIT VProcess ofand note taUNIT VAnxiety reaTEXTAppropriat1. Nau2. Sau3. Fre4. PetREFERENT1. Sus	g techniques, how to ransack the library etc. REFERENCE SKILLS e the library facilities for research and to write arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals and other e- learning materials - how to the arnals - how to	assignments - how to fi use a dictionary and the d varied reading technic ntific writing and fami e analysis - use of visua es of exam / evaluation t Longman. New Delhi, koo, Oxford University ford University Press, N xford University Press, ith Readings Paperback	fami nd ou sauru jues - liariz l aids techr 2006 Press ew D 1992 - 20	liarization ut references at ion cation s, and s, and s, and s, 2009 s.2009 s.2009	ation erend iliari to = note s etc	ce boo	asic bks n to ific

- 3. Kiranmai Dutt and Geetha Rajeevan. A Course in Listening and Speaking I & II. New Delhi: Foundation Books, Cambridge House, 2006.
- 4. David Bolton, English Grammar in Steps, Richmond Publishing, New Delhi, 2000

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO 2
CO1	0	0	0	0	0	3	0	0	0	0	0	0	0	0
CO2	0	0	0	0	0	0	3	0	0	3	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	1	0	1	0	0
CO4	0	2	0	0	0	3	0	0	2	1	0	0	0	0
CO5	0	0	0	0	0	0	0	0	0	3	2	0	0	0
Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scaled Value	0	2	0	0	0	6	3	0	2	8	0	1	0	0
	0	1	0	0	0	2	1	0	1	2	0	1	0	0

Table 1: Mapping of Cos with POs:

1-5=1, 6-10=2, 11-15=3

0-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation

COURSE	CODE	XUM 106	L	Τ	P	SS	C		
COURSE	NAME	HUMAN ETHICS,VALUES,RIGHTS AND GENDER EQUALITY	1	0	0	0	1		
PREREQ	UISITES	Not Required	L	Т	Р	SS	H		
C:P:A		2.7:0:0.3	1	0	0	2	3		
COURSE	OUTCOMES	DOMAIN		LEVEL Remember, Understanding Applying Analyzing					
CO1	<i>Relate</i> and <i>Interpret</i> the human ethics and human relationships	Cognitive				,	ıg		
CO2	<i>Explain</i> and <i>Apply</i> gender issues, equality and violence against women	Cognitive					ıg,		
CO3	<i>Classify</i> and <i>Develop</i> the identify of women issues and challenges	Cognitive & Affective			alyz ceivi	-			
CO4	<i>Classify</i> and <i>Dissect</i> human rights and report on violations.	Cognitive		Un		tandin	g,		
CO5	<i>List</i> and respond to family values, universal brotherhood, fight against corruption by common man and good governance.	Cognitive & Affective		Re		ıber,			
UNIT I	HUMAN ETHICS AND VALUES						,		
Human Eth Justice, Dig Caring and Commitmer	ETHICS AND VALUES ics and values - Understanding of ones mity and worth, Harmony in human re- Sharing, Honesty and Courage, WH at, Sympathy and Empathy, Self respect,	lationship: Family and Society, Inte O's holistic development - Valuin	egrit 1g T	y an 'ime,	d Co Co-	mpete operat	nce tior		
UNIT II		definition Conden equity equality							
Status of Contribution	uality - Gender Vs Sex, Concepts, c Women in India Social, Economical ons of Dr.B.R. Ambethkar, ThanthaiPe	l, Education, Health, Employme eriyar and Phule to Women Empo	nt,]	HDI,	GE		EM		
UNIT II						• •	(
Sexual Hara	ues and Challenges- Female Infanticide, F assment, Trafficking, Access to educatio ght, Property Rights, and Rights to Edu Act.	on, Marriage. Remedial Measures -	Acts	s rela	ted t	o won	ner		
UNIT IV	HUMAN RIGHTS						(
Duties, Cultural R children an Human Ri	ghts Movement in India – The prea Universal Declaration of Human Rig ights, Rights against torture, Discrim d elderly. National Human Rights Co ghts Literacy and Awareness In al safety, occupational health and wor	the state of the s	cono ghts nmis	mica and ssion	al, S prot is, C	ocial ection reation	an n o n o		

UNIT V	GOOD GOVERNANC	CE AND ADDRI	ESSING S	SOCIAL IS	SUES	1
Good Govern	ance - Democracy, People	e's Participation,	Transpare	ency in gove	ernance and	
udit,Corrupt	ion, Impact of corruption	on society, whon	n to make	corruption of	complaints, fi	ght against
orruption an	d related issues, Fairness i	in criminal justice	e administ	tration, Gov	ernment syste	em of
edressal. Cr	eation of People friendly	environment and	universal	brotherhood	d.	
		LEC	FURE	SELF S	STUDY	TOTAL
		1	5	3	30	45
EFERENC	ES					
1. Aftab	A, (Ed.), Human Rights	in India: Issues	and Cha	llenges, (No	ew Delhi: Ra	iPublications
2012)				-		-
2. Bajwa	, G.S. and Bajwa, D.K.	Human Rights	in India:	Implementa	ation and Vio	olations (New
Delhi	D.K. Publications, 1996)). 		-		
3. Chatra	ath, K. J. S., (ed.), Educat	tion for Human F	Rights and	l Democracy	y (Shimala: Ir	ndian Institut
of Ad	vanced Studies, 1998).		-	-		
4. Jagado	eesan. P. Marriage and	d Social legisla	tions in	Tamil Na	du, Chennai	i: Elachiape
Public	ations, 1990).					
5. Kaush	al, Rachna, Women and H	Human Rights in	India (Ne	w Delhi: Ka	veri Books, 2	2000)
6. Mani.	V. S., Human Rights in I	ndia: An Overvie	ew (New]	Delhi: Instit	ute for the W	orld Congres
on Hu	man Rights, 1998).					
7. Singh	, B. P. Sehgal, (ed) Huma	an Rights in India	a: Probler	ns and Pers	pectives (New	v Delhi: Dee
and D	eep, 1999).					
8. Veera	mani, K. (ed) Periyar on	Women Right, (O	Chennai: E	Emerald Pub	lishers, 1996))
9. Veera	mani, K. (ed) Periyar H	Feminism, (Periy	'arManiar	nmai Unive	ersity, Vallan	n, Thanjavu
2010)						
10.Planni	ng Commission	report on	Occupa	ational	Health an	nd Safet
<u>http://</u>	planningcommission.nic.i	n/aboutus/comm	ittee/wrkg	<u>grp12/wg_oc</u>	ccup_safety.p	
11. Centra	al Vigilance Commission	(Gov. of India) w	ebsite: <u>ht</u>	tp://cvc.nic.	in/welcome.h	<u>tml</u> .
12. Webli	nk of Transparency Intern	national: <u>https://w</u>	ww.trans	parency.org	<u>/</u>	
13. Webli	nk Status report: https://w	ww.hrw.org/wor	ld-report/	2015/countr	y-chapters/in	dia

	Mapping of COs with Pos													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1								2						
CO2								3	1					
CO3								2						
CO4								3		2				
CO5								3	2	2		2		
Total		2						13	3	4		2		
Scaled		1						3	1	1		1		
Value														

Mapping of COs with Pos

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$

0-No relation, 1-Low relation, 2-Medium relation, 3-High relation

SYLLABUS

II SEMESTER

COURSE	CODE	XMA201	L	Т	Р	С
COURSE	NAME	CALCULUS AND LAPLACE TRANSFORMS	3	1	0	4
PREREQ	UISITES	Basic concepts of Differentiation, Integration, Vectors and Complex numbers.	L	T	P	H
C:P:A		3:0:0	3	2	0	5
COURSE	OUTCOMES	DOMAIN	LE	VEL		
CO1	<i>Make Use of</i> standard results to <i>Find</i> the Laplace transforms of derivatives and integrals and to <i>solve</i> differential equations.	Cognitive	Rec	ceivin	ig, Aj	oply
CO2	<i>Apply multiple integral concepts to</i> <i>Find</i> the area, volume and to understand the order of integration.	Cognitive	Red	ceivin	ig, Aj	oply
CO3	<i>Define</i> the gradient, divergent curl of vectors. <i>Find</i> directional derivative, unit vector normal to the surface. <i>Apply</i> corresponding theorems to <i>Find</i> the line, surface and Volume integrals.	Cognitive	Rec	ceivin	ig, Aj	oply
CO4	<i>Construct</i> and examine the analytic functions, and their the complex Conjugate and to <i>Explain</i> the concept of conformal mapping and to <i>Construct</i> the bilinear transformation.	Cognitive	Un Apj		andin	g,
CO5	<i>Explain</i> the poles , singularities and residues of functions and to <i>solve</i> the problems using contour integration	Cognitive		derst ply	andin	g,
UNIT I	LAPLACE TRANSFORMS					15
derivatives	s of elementary functions – properties – and integrals - Transforms of unit step Convolution Theorem – Inverse transfo	function and impulse function -	Trans	sform	of pe	riodic
UNIT II	MULTIPLE INTEGRALS					15
integral –	egration – Cartesian and polar coordina change of variables between Cartesian s (Finding area & volume of a certain re	n and polar coordinates - triple				

UNIT III VECTOR CALCULUS			15
Gradient, divergence and curl - directional derivative	- normal and tar	igent to a given	surface – angle
between two surfaces - irrotational and solenoidal ver-			•
Green's theorem in a plane, Gauss divergence theorem	and Stoke's theor	rem (excluding p	roof).
UNIT IV ANALYTIC FUNCTIONS			15
Function of a complex variable – analytic function – ne	ecessary and suffic	cient condition (e	excluding
proof) - Cauchy Riemann equations - properties of ana	alytic functions - h	narmonic conjuga	ate -
construction of an analytic function – Conformal mapp	ing: w = z + c. cz.	$\frac{1}{-}$, sinz, coshz.	$\frac{k^2}{2}$ -
	8, , , , , ,	Z,	Z
Bilinear transformation.			
UNIT V COMPLEX INTEGRATION			15
Statement and application of Cauchy's integral theore	U	•	
expansion - Residues - Cauchy's Residue Theorem - C			
	LECTURE	TUTORIAL	TOTAL
TEXT	45	30	75
Delhi, 2011. 2. Kreyszig, E, Advanced Engineering Mathen Son(Asia) Ltd, Singapore, 20 REFERENCES	natics, Eighth Edit 01.	ion, John Wiley	and
1. Bali N.P and Narayana lyengar, Engineering	g Mathematics, La	axmi Publication	s (P) Ltd. New
Delhi, 2003.	6,		- (-) =;
2. Veerarajan T, Engineering Mathematics For	urth Edition, Tata	– McGraw Hill I	Publishing
Company Ltd, New Delhi, 2005.			
3. Kandasamy P., Thilagavathy K, and Gunav	athy K, Engineeri	ng Mathematics	Volume I, II
and III, S. Chand & Co, New Delhi, 2005.		1 H D	
4. Venkataraman M. K, Engineering Mathema Edition, The National Publishing Company.		d II Revised enla	rge Fourth
E REFERENCES			
www.nptel.ac.in			
Advanced Engineering Mathematics Prof. Jitendra	Kumar		

Department of Mathematics Indian Institute of Technology, Kharagpur

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3											1
CO 2	3											1
CO 3	3	2								1	1	2
CO 4	3	2			1					1	1	1
CO 5	3	2			1					1	1	1
	15	6	0	0	2	0	0	0	0	3	3	6

Mapping of COs with Pos

^{1 -} Low , 2 – Medium , 3- high

	CODE	XCP202	L	Т	Р	С
COURSE	NAME	COMPUTER PROGRAMMING	3	1	0	4
PREREQU	JISITES		L	Т	Р	Н
C:P:A		3:1:0	3	2	0	5
COURSE	OUTCOMES	DOMAIN	LE	VEL		
CO1	Define programming fundamentals and Solve simple programs using I/O statements. Statements Statements Statements	Cognitive Psychomotor	Ren	nemb	er Lespoi	nse
CO2	Definesyntaxandwritesimpleprogramsusingcontrol structures and arrays	Cognitive Psychomotor		nemb ded R	er Lespoi	nse
CO3	<i>Explain</i> and <i>write simple</i> <i>programs</i> using functions and pointers	Cognitive Psychomotor		lersta ded R	nd Lespoi	nse
CO4	<i>Explain</i> and <i>write simple</i> <i>programs</i> using structures and unions	Cognitive Psychomotor		lersta ded R	nd Respoi	nse
CO5	<i>Explain</i> and <i>write simple</i> <i>programs</i> using files and	Cognitive Psychomotor		lersta ded R	nd Lespoi	nse
	Build simple projects		0.01		cspoi	150
UNIT I	PROGRAMMING FUNDAN /OUTPUT STATEMENTS	•				
Theory Program – Tokens: 1 Data Types Practical Program to Program fo Program to	PROGRAMMING FUNDAN /OUTPUT STATEMENTS Flowchart – Pseudo code – S Identifiers, Keywords, Constants, - Output statements – Input state display a simple picture using do r addition of two numbers swap two numbers	MENTALS AND INPUT oftware – Introduction to C languag and Operators – sample program stru- ments.	ge –	Chara	acter	set
Theory Program – Tokens: 1 Data Types Practical Program to Program fo Program to	PROGRAMMING FUNDAN /OUTPUT STATEMENTS Flowchart – Pseudo code – Se Identifiers, Keywords, Constants, - Output statements – Input state display a simple picture using do r addition of two numbers swap two numbers solve any mathematical formula.	MENTALS AND INPUT oftware – Introduction to C languag and Operators – sample program stru- ments. ts.	ge –	Chara	acter	set

UNIT III FUNCTIONS AND POINTERS			15
Theory			
Functions: Built in functions – User Defined Functions	- Parameter pass	sing methods - Pa	assing arrays to
functions – Recursion - Programs using arrays and funct	-	-	
operator - Pointer expressions & pointer arithmetic - Poi			
Reference - Pointer to arrays - Pointers and structures - I			J
Practical	Ĩ		
Program to find factorial of a given number using four fu	unction types.		
Programs using Recursion	• •		
Programs using Pointers			
UNIT IV STRUCTURES AND UNIONS			9+7
Theory			
Structures and Unions - Giving values to members - Init	itializing structu	re - Functions an	d structures -
Passing structure to elements to functions - Passing entir	-		
Structure within a structure and Union.		2	
Practical			
Program to read and display student mark sheet Structur	es with variables	5	
Program to read and display student marks of a class usi			
Program to create linked list using Structures with pointed	ers	•	
UNIT V FILES			15
File management in C - File operation functions in C The getw and putw functions - The fprintf & fscanf func Practical Program for copying contents of one file to another file. Program using files using structure with pointer			
Trogram using mes using structure with pointer	LECTURE	PRACTICAL	TOTAL
	45	30	75
TEXT BOOKS		50	10
1. Byron Gottfried, "Programming with C",	III Edition (I	ndian Adapted	Edition) TMH
publications, 2010	III Laition, (I	idium ridupica	
2. Yeshwant Kanethker, "Let us C", BPB Publica	ations, 2008		
REFERENCES			
1. Brian W. Kernighan and Dennis M. Ritchi	e. "The C Prog	ramming Langu	age", Pearson
Education Inc. (2005).	.,		
2. Behrouz A. Forouzan and Richard. F. Gilber	g. "A Structured	l Programming A	Approach Using
C", II Edition, Brooks–Cole Thomson Learning Publicat	-	- <u>6</u> 8 -	11
3. Johnsonbaugh R. and Kalin M., "Applications		n ANSI C", III E	Edition, Pearson
Education India, 2003.	8B	- ,	,
Education mula, 2005.			
https://iitbombayx.in/courses/IITBombayX/BMV	VCS101.1x/201:	5_T1/courseware	;

Mapping of COs with Pos

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	РО 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1								2						
CO2								3	1					
CO3								2						
CO4								3		2				
CO5								3	2	2		2		
Total		2						13	3	4		2		
Scaled Value		1						3	1	1		1		

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No relation, 1-Low relation, 2-Medium relation, 3-High relation

COURSE	CODE	XBW203	L	Т	Р	С				
COURSE	NAME	MECHANICAL AND CIVIL ENGINEERING SYSTEMS (WORKSHOP PRACTICE INCLUDED)	3	1	1	5				
PREREQU	UISITES	L T		Р	P H					
C:P:A		1.5:1.5:0	3	2	2	7				
COURSE	OUTCOMES	DOMAIN	LEVEL							
C01	Define and visualize the working principles of the various boilers, turbines and enginesCognitive PsychomotorKnowledge									
CO2	<i>Differentiate and auscultate</i> the measurements by using various metrology instruments	Cognitive Psychomotor	Comprehension							
CO3	<i>Categorise and palpate</i> the various metal forming, joining and cutting processes	Cognitive Psychomotor	Synthesis							
CO4	<i>Characterize and diagonose</i> the quality of the good Building materials; and measure linear and angular dimensions	Cognitive Psychomotor	Kno	Knowledge						
CO5	<i>Summarize and palpate</i> the components of a substructures and super structures.	ad palpate the f a substructuresCognitive PsychomotorEvalue								
UNIT I	Basics of Thermal and Energy Sy	ystems				21				
and non co Boilers and engines – F Practical: Petrol engin Diesel engi	n to Mechanical Engineering – Stream onventional sources of energy – Heat I Turbines – Classification of IC Eng Performance and heat balance – Work ne performance – BHP ne performance – BHP tion of refrigeration and air condition	energy – Modes of heat transfer – gines – 4 stroke and 2 stroke engining principles of hydel, steam and	Work	ing p Petrol	rincip and	oles of diesel				
UNIT II						15				
Velocity ra Principle o Caliper – M Practical: Measureme	g materials – Machine elements – f tio and Length of belt – Gear drives – f measurements – Accuracy – Precis Aicrometer – Slip gauges – Spirit leve ents using Vernier Caliper, Micrometer tion of transmission system in machir	- Types – Velocity ratio. ion – Errors – Measuring instrume el. er, Slip gauges and Spirit level.	ents –	Scale		-				
UNIT II						15				
Manufactur	ring processes – Classification – Prin of metal joining – welding, soldering		g, moi	ulding	g, cast					

Machining – turning, drilling, milling and grinding – Machining time and material removal rate. **Practical:**

Exposure to workshop tools

Fitting exercises: Square and triangle

Simple turning and drilling

Demonstration of welding and mould preparation

UNIT IV Surveying and Construction Materials

Surveying: Definition – Survey Instruments – Classification of Survey – Linear and Angular Measurements – Measurement of area – Illustrative Examples.

Construction Materials: Bricks – Stones – Timber – Steel – Cement – Sand – Aggregates – Concrete **Practical:** Surveying

UNIT V	Components and of Construction of Civil Structures	15				
Substructure: Bearing capacity - Types of Foundation – Application – Requirement of good foundations.						
Superstructure: Brick masonry – Types of bond – Flooring – Beams – Columns – Lintels – Roofing –						
Doors and windows fittings – Introduction to bridges and dams – Building drawing						
Practical: Building drawing, Carpentry, Plumbing.						

LECTURE	PRACTICAL	TOTAL		
45	30	75		

15

TEXT BOOKS

Dr. P.K. Srividhya, P. Pandiyaraj, S. Balamurugan, "Basic Civil and Mechanical Engineering", PMU Publications, Vallam, 2013.

Dr. B.C.Punmia, Ashok Kumar Jain, "Basic Civil Engineering", Laxmi Publications, New Delhi, 2003. Dr. B.C.Punmia, "Surveying – Volume I", Laxmi Publications, New Delhi, 2005

REFERENCES

Venugopal K., Basic Mechanical Engineering, Anuradha Publications, Kumbakonam, 2007.

Shanmugam G. and Palanichamy M. S., "Basic Civil and Mechanical Engineering", Tata Mc Graw Hill Publishing Co., New Delhi, 3rd Edition, 2009.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	2	-	-	-	-	-	-	_	_
CO2	2			2		1	-	-	-	-	-	_
CO3		2			2	_	_	_	_	-	-	-
CO4		3		1		_	_	_	_	-	-	-
CO5	1	1			3	-	-	-	-	-	-	_
Total	5	6	-	5	5	1	-	-	_	_	-	-

Mapping of CO's with PO's:

1 - Low, 2 – Medium, 3 – High

COURSE	CODE	XAC204	L	Т	Р	С		
COURSE	NAME	APPLIED CHEMISTRY	3	1	1	5		
PREREQ	UISITES	Nil	L	Т	Р	Н		
C:P:A		2.8:0.8:0.4	3	7				
COURSE	OUTCOMES	DOMAIN	LEVE	EL				
CO1	<i>Identify</i> and describe the various water quality parameters and methods to purify water in contest with boilers and domestics usage.	Cognitive Psycomotor		Remember Perception				
CO2	<i>Explain</i> the fundamental principles of electrochemical reactions, its applications in redox reactions and calculate the different electrochemical processes.	Cognitive Psycomotor	Under	stand	Set			
CO3	<i>Interpret</i> the types of corrosion, <i>use</i> and <i>measure</i> its control by various methods including protective techniques.	Cognitive Psycomotor Affective	Apply Mecha		Rece	eive		
CO4	<i>Describe</i> , <i>Illustrate</i> and <i>Discuss</i> the generation of energy in batteries, nuclear reactors, solar cells, fuel cells and anaerobic digestion.	Cognitive	Remen Analy Respo	se				
CO5	<i>Apply</i> and <i>measure</i> the different types of spectral techniques for quantitative chemical analysis and <i>list</i> nanomaterials for various engineering processes.	Cognitive Psycomotor	Remen Apply Mecha					
UNIT I	WATER TECHNOLOGY		7 + 8	+9				
estimation requiremen demineraliz	d types of water – water quality paramete of hardness (problems) – alkalinity: typ hts – disadvantages of using hard water is zation process – desalination using rever processes in industries ELECTROCHEMISTRY	es and estimation (problems) in boilers – internal treatmen	– boile t, exterr er treatm	r feed nal trea nent –	wat atme	ter - ent -		
		and conductometric tituations	8+5 +		tont			
Nernst equelectrocher and second electrocher	eepts of conductance – Kohlraush's law a uation: derivation and problems – rev nical cells – emf and its measurements – dary – glass electrode – determination nical series and its applications – Galva redox titrations.	versible and irreversible cel - types of electrodes-reference of pH using quinhydrone a	lls – el e electro .nd glas	ectrol odes – s elec	ytic prin trode	and nary es -		
UNIT III		E COATINGS	9+4	+3				
Corrosion- in electror	causes- types-chemical, electrochemical nic devices, corrosion control - materia – sacrificial anode method and impressed	corrosion (galvanic, different al selection and design aspe	ial aerat	ion), c				

Protective coatings: paints- constituents and functions - electroplating of copper and gold, Electro less plating - Distinction between electroplating and electro less plating,

Advantages of electroless plating, electro less plating of nickel and copper on PCB.

UNIT IVENERGY STORAGE DEVICES AND NUCLEAR ENERGY12 + 7+0

Energy storage devices – Batteries: Types – primary (dry cell, alkaline cells) and secondary (lead acid, Ni-Cd and Lithium ion batteries) - Super capacitors – Fuel cells-Hydrogen-Oxygen fuel cell- Solar cells .

Nuclear energy: nuclear fission and fusion –chain reaction and its characteristics – nuclear energy and calculations (problems) – atom bomb –Nuclear reactor- light water nuclear power plant – breeder reactor- Weapon of mass destruction- nuclear, radiological, chemical and biological weapons. Disarmament - National and International Cooperation- Chemical Weapon Convention (CWC), Peaceful Uses of Chemistry. Bio fuels: biomethanation- anaerobic digestion process, biomass: sources and harness of energy.

UNIT V SPECTROSCOPY AND NANOCHEMISTRY

9 +6 +3

Electromagnetic spectrum - Lambert law and Beer-Lambert's law (derivation and problems) – molecular spectroscopy -UV- visible spectroscopy: electronic transitions - chromophores and auxochromes – instrumentation (block diagram) - applications – IR spectroscopy: principle – fundamental modes of vibrations – calculations of vibrational frequency – IR spectrophotometer instrumentation (block diagram) – applications of IR spectroscopy.

Nanochemistry - Basics - distinction between molecules, nanoparticles and bulk materials; size-

dependent properties. Nanoparticles: Nanocluster, nanorod, nanotube and nanowire. Synthesis;

properties and applications of nano materials-Buckminister fullerenes, CNT"S(Single walled carbon nano tubes and Multi-walled carbon tubes)-Graphene- advantages and applications.

	LECTURE	TUTORIAL	TOTAL
	45	30	75
TEXT BOOKS			
1. Jain and Jain, "A Text book of Engineering (Chemistry", Dhanapa	atrai Publications,New I	Delhi,
2011.			
2. Gadag and NityanandaShetty, "Engineering	Chemistry", I.K Inte	rnational publishing	
House Pvt. Ltd, 2010.			
3. P. Atkins, J.D. Paula, "Physical Chemistry"	, Oxford University]	Press, 2009.	
4. S. S. Dara, S. S. Umare, "A Text Book of En	gineering Chemistry	", S. Chand Publishing,	2011
5. C.P. Poole and F.J. Owens, "Introduction to I	Nanotechnology", , V	Viley, New Delhi ,2007	•
REFERENCES			
1. Puri B R Sharma L R and Madan S Pathania	a, " Principles of Phy	sical Chemistry", Visha	ıl
publishing Co., Edition 2004			
2. Kuriocose, J C and Rajaram, J, "Engineering	g Chemistry", Volum	e I/II, Tata McGraw-	
Hill Publishing Co. Ltd. New Delhi, 2000			
E REFERENCES			

E Resources - MOOCs:

- 1. http://www.mooc-list.com/course/chemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-chemistry
- 3. http://freevideolectures.com/Course/2263/Engineering-Chemistry-I
- 4. <u>http://freevideolectures.com/Course/3001/Chemistry-I</u>
- 5. <u>http://freevideolectures.com/Course/3167/Chemistry-II</u>
- 6. http://ocw.mit.edu/courses/chemistry/

Laboratory Part

30 hrs

- 1. Determination of total hardness, temporary and permanent hardness of water by EDTA method.
- 2. Determination of alkalinity of water sample.
- 3. Determination of chloride content of water sample by Argentometric method.
- 4. Conductometric titration of a strong acid with a strong base.
- 5. Determination of strength of hydrochloric acid by pH metric method.
- 6. Conductometric precipitation titration using barium chloride and sodiumsulphate.
- 7. Determination of strength of iron by potentiometric method using dichromate.
- 8. Potentiometric acid-base titration using quinhydrone electrode.
- 9. Corrosion inhibition efficiency by weight loss method.
- 10. Estimation of iron by colorimetric method.

REFERENCE BOOKS

- 1. Mendham, Denney R.C., Barnes J.D and Thomas N.J.K., "Vogel's Textbook of Quantitative Chemical Analysis", 6th Edition, Pearson Education, 2004.
- 2. Garland, C. W.; Nibler, J. W.; Shoemaker, D. P. "Experiments in Physical Chemistry", 8th Ed.; McGraw-Hill: New York, 2003.
- 3. Sirajunnisa.A., Sundaranayagi.S.,Krishna.,Rajangam.R.,Gomathi.S., "Applied Chemistry Lab Manual", Department of Chemistry, PMU Press, Thanjavur, 2016.

E Resources - MOOCs:

1.http://freevideolectures.com/Course/2380/Chemistry-Laboratory-Techniques

2. http://freevideolectures.com/Course/2941/Chemistry-1A-General-Chemistry-Fall-2011

3.http://ocw.mit.edu/courses/chemistry/5-301-chemistry-laboratory-techniques

	LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
HOURS	45	30	30	105

Mapping of CO's with PO's:

	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O 1	PSO 2
CO1	3	3	3	3	3	1	2	3	1	3	1	1	2	1
CO2	3	2	3	3	3	2	3	3	1	3		1	2	1
CO3	3	3	3	3	3	1	3	3	1	2	1	1	2	2
CO4	3		3	3	3	3	3	3	1	1		1	3	2
CO5	1	3		2	2	1	2		1	1		1	2	2
Total	13	11	12	14	14	8	13	12	5	10	2	5	11	8
Scale d Value	3	3	3	3	3	2	3	3	1	2	1	1	1	2
1-5-	1,6-	$10 \rightarrow 2$, 11 –	$15 \rightarrow 3$						1	1	1		

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

COURSE C	ODE	XEG205	L	Т	Р	С
COURSE N	AME	ENGINEERING GRAPHICS	2	1	0	3
PREREQUI	SITES	Nil	L	Т	Р	Н
C:P:A		1:1:1	2	2	0	4
COURSE O	UTCOMES	DOMAIN	LE	VEL		
CO1	<i>Apply</i> the national and international standards, <i>construct</i> and <i>practice</i> various curves	C(Ap), P(GR) and A(Res)				
CO2	<i>Interpret, construct</i> and <i>practice</i> orthographic projections of points, st. lines and planes.	C(Under) ,P(Mech) and A(Res)				
CO3	Construct Sketch and Practice projection of solids in various positions and true shape of sectioned solids.					
CO4	<i>Interpret</i> , <i>Sketch</i> and <i>Practice</i> the development of lateral surfaces of simple and truncated solids, intersection of solids.	C(Under),P(CoR) and A(Res)				
CO5	<i>Construct, sketch</i> and <i>practice</i> isometric and perspective views of simple and truncated solids.	C(Apply),P(CoR) and A(Res)				
UNIT I	INTRODUCTION, FREE HA	AND SKETCHING OF ENGG				6+6
and convention Pictorial reprint dimensional sketching of Polygons & parabola and	ons as per SP 46-2003. resentation of engineering objects media – need for multiple view three dimensional objects. curves used in engineering practi	tions – use of drafting instruments s – representation of three dimens vs – developing visualization skill ce – methods of construction – co od – cycloidal and involute cur	sional ls thr onstru	obje ough	ects in free of el	n two hand llipse,
UNIT II	PROJECTION OF POINTS, I SURFACES	LINES AND PLANE				6+6
pints, straigh inclinations t	ciples of orthographic projection – tt lines located in the first quadr	- first angle projection – layout of v rant – determination of true lengt s – projection of polygonal surface	hs of	lines	s and	their
UNIT III	PROJECTION OF SOLIDS A	ND SECTIONS OF SOLIDS				6+6
Projection of	simple solids like prism, pyramid,	, cylinder and cone when the axis is	incli	ned to	o one	plane

of projection – change of position & auxiliary projection methods – sectioning of above solids in simple vertical positions by cutting plane inclined to one reference plane and perpendicular to the other and above solids in inclined position with cutting planes parallel to one reference plane - true shapes of sections.

UNIT IV **DEVELOPMENT OF SURFACES AND INTERSECTION** 6+6 **OF SOLIDS**

Need for development of surfaces - development of lateral surfaces of simple and truncated solids prisms, pyramids, cylinders and cones – development of lateral surfaces of the above solids with square and circular cutouts perpendicular to their axes - intersection of solids and curves of intersection -prism with cylinder, cylinder & cylinder, cone & cylinder with normal intersection of axes and with no offset.

UNIT V	ISOMETRIC AND PERSPECTIVE PROJECTIONS	6+6						
Principles of isometric projection – isometric scale – isometric projections of simple solids, truncated								
prisms, pyran	nids, cylinders and cones - principles of perspective projections -	projection of prisms,						

pyramids and cylinders by visual ray and vanishing point methods.

LECTURE	TUTORIAL	TOTAL
30	30	60

TEXT

- 1. Natarajan,K.V, " A Textbook of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2006.
- 2. Dr. P.K. Srividhya, P. Pandiyaraj, "Engineering Graphics", PMU Publications, Vallam, 2013

REFERENCES

- 1. Luzadder and Duff, "Fundamentals of Engineering Drawing" Prentice Hall of India PvtLtd, XI Edition - 2001.
- 2. Venugopal,K. and Prabhu Raja, V., "Engineering Graphics", New Age International(P) Ltd., 2008.
- 3. Gopalakrishnan.K.R, "Engineering Drawing I & II", Subhas Publications, 1998.
- 4. Shah, M.B and Rana, B.C., "Engineering Drawing", Pearson Education, 2005.

E REFERENCES

- 1. http://periyarnet/Econtent
- 2. http://nptel.ac.in/courses/112103019/

Mapping of CO's with PO:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	1	1							1
CO2	3	2	1	1	1							1
CO3	3	2	1	1	1							1
CO4	3	2	1	1	1							1
CO5	3	2	1	1	1							1
Total	15	10	7	5	5							5
Scaled	3	2	2	1	1							1

1 – Low Relation, 2 – Medium Relation, 3 – High Relation

COURSE C	ODE	XGS206		L	Т	Р	С	
COURSE N	AME	SPEECH COMMUNICATION		1	0	2	2	
PREREQU	ISITES			L	Т	Р	Н	
C:P:A		3:0:0		1	0	2	3	
COURSE O	OUTCOMES	DOMAIN		LEV	VEL	•	•	
CO1	<i>Identify</i> different styles to various forms of public speaking skills and presentation skills	Cognitive		Remember				
CO2	<i>Understand</i> and identify the proper tone of language required in writing and speaking	Cognitive		Understanding				
CO3	<i>Adapt</i> the speech structures and develop the speech outline according to the audience.	Cognitive Psychomotor		Apply				
CO4	<i>Ability</i> to communicate and develop presentation skills	Cognitive Affective		Response				
CO5	<i>Equip</i> the speaker to face the audience without any anxiety.	Psychomotor	tor Guided Respon					
UNIT I	INTRODUCTION TO PUBLIC					9		
importance of	f oral communication; skills and of public speaking skills in everyday of group work.							
UNIT II	TYPES OF SPEECH						9	
1 '	impromptu, rememorized and exten veloping ideas; finding and using su	1 1 [']	alyzing the	audi	ence	and		
,								
UNIT III	ORGANIZATION OF SPEECH	[9	
UNIT III Introduction		age used in various type	s of speech	nes; A	Adapt	ing tł		
UNIT III Introduction	ORGANIZATION OF SPEECH	age used in various type	s of speech	nes; A	Adapt	ing th		
UNIT III Introduction speech struct UNIT IV	ORGANIZATION OF SPEECH , development and conclusion; langu tures to the Audience; paralinguistic USE OF VISUAL AIDS ent a paper/assignment etc; using vis	age used in various type features.	-					
UNITIIIIntroduction speech structUNITIVHow to press	ORGANIZATION OF SPEECH , development and conclusion; langu tures to the Audience; paralinguistic USE OF VISUAL AIDS ent a paper/assignment etc; using vis	age used in various type features.	-					
UNIT III Introduction speech struct UNIT IV How to press communicate UNIT V	ORGANIZATION OF SPEECH , development and conclusion; langu tures to the Audience; paralinguistic USE OF VISUAL AIDS ent a paper/assignment etc; using vis	age used in various type features. sual aids to the speeches;	using bod	y lan	guage	e to	ie g	
UNITIIIIntroduction speech structUNITIVHow to press communicateUNITVPublic speak	ORGANIZATION OF SPEECH , development and conclusion; langu tures to the Audience; paralinguistic USE OF VISUAL AIDS ent a paper/assignment etc; using vise SPEECH ANXIETY	age used in various type features. sual aids to the speeches;	using bod	y lan; practic	guage	e to	ne 9 seches	

TEXT BOOKS

- 1. **Principles and Types of Public Speaking 2002** by <u>Raymie E. McKerrow</u> (Author), <u>Bruce E.</u> <u>Gronbeck</u>, <u>Douglas Ehninger</u>, <u>Alan H. Monroe</u>
- 2. **Communication : Principles for a lifetime,** portable Edition- volume 2 Interpersonal Communication, Stevan A. Beebe, Texas State University- San Marcos, 2008.
- 3. Writing and Speaking Author: John Sealy, Oxford University Press, New Delhi Third Edition 2009. Communicating in Business (8th Edition) Paperback 2012 by <u>Williams K S</u>, Engage Learning India Pvt. Ltd.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	0	0	0	0	3	0	0	2	0	2	0	0
CO2	0	1	0	0	0	1	0	2	0	1	0	0
CO3	0	0	0	0	0	0	0	0	0	2	0	0
CO4	0	0	0	2	0	2	0	0	0	1	0	0
CO5	0	0	0	0	0	3	0	0	0	3	0	0
Total	0	1	0	2	3	6	0	4	0	9	0	0
Scaled Value	0	1	0	1	1	2	0	1	0	2	0	0

Mapping of Cos with POs:

1-5=1, 6-10=2, 11-15=3

0-No Relation, 1- Low Relation, 2 – Medium Relation, 3- High Relation

SYLLABUS III SEMESTER

COURSI	E CODE	XMA301	L	Т	Р	С	
COURSI	E NAME	TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS	3	1	0	4	
PRERE(JUISITES	XMA101, XMA201	L	Т	Р	Н	
C:P:A		3:0:0	3	2	0	5	
COURSI	E OUTCOMES	DOMAIN	LE	VEL			
C01	<i>Explain</i> and <i>Demonstrate</i> the basic concepts in partial differential equations and to solve linear, nonlinear, homogeneous and nonhomogeneous Partial Differential equations.	Cognitive		Remembering Understanding			
CO2	<i>Demonstrate</i> the basic concept and properties of Fourier series and to <i>State</i> Parseval's identity and Diritchlet's condition.	Cognitive		Remembering Understanding			
CO3	<i>Solve</i> the standard Partial Differential Equations, arising in Engineering Problems, like Wave equation and Heat flow equation by Fourier series method.	Cognitive	Apj	ply			
CO4	<i>Explain</i> and <i>Apply</i> the concept of Fourier transform and its properties.	Cognitive	Un Ap		nding	5	
CO5	CO5 <i>State</i> and <i>Apply</i> the properties of Z transform and to <i>Find</i> the Z transform and inverse Z transform.	Cognitive		emen	ıberin	g	
UNIT I	PARTIAL DIFFERENTIAL EQUA	TIONS				15	
Formation Solution – Lagran	n of partial differential equations by elim of standard types of first order partial dif ge's linear equation – Linear partial d coefficients.	nination of arbitrary constants and fferential equations		-		ions –	
UNIT I Dirichlet' range cos		nic Analysis. Fourier series of rect	-			15 Half	
UNIT I						15	
Classifica wave equ	ation of second order quasi linear partia ation – One dimensional heat equati (Insulated edges excluded) – Fourier ser	l differential equations – Solution on – Steady state solution of t	wo c			sional	

+-Fourier integral theorem (without proof) - Fourier									
	er transform pai	rs – Fourier Si	ne and Cosine						
transforms – properties – Transforms of simple functions – Convolution theorem – Parseval's identity.									
Application to convolution of signals in frequency de	omain. Fourier t	ransform as tool	for estimating						
spectrum of the signals. Simple examples of Frequency			-						
UNIT V Z – TRANSFORM AND DIFFERENCE			15						
Z-transform – Elementary properties – Inverse Z – trar	sform – Convolu	tion theorem – I	nitial and Final						
value theorems - Formation of difference equations									
transform. Discrete system and their solutions and analy		1	U						
	LECTURE	TUTORIAL	TOTAL						
	45	30	75						
ТЕХТ			-						
1. Grewal, B.S., "Higher Engineering Mathematic	s", 42 nd Edition,	Khanna Publishe	ers, New Delhi						
(2012).									
2. Narayanan, S., ManicavachagomPillay, T.K. and									
Mathematics for Engineering Students", Volume	es II and III, S.Vi	swanathan (Print	ers and						
Publishers) Pvt. Ltd.,									
Chennai (2002).									
3. Veerarajan. T., "Transforms and Partial Differe	ential Equations"	, Second reprint,	Tata McGraw						
Hill Education Pvt. Ltd.,									
New Delhi, 2012.									
REFERENCES									
1. Churchill, R.V. and Brown, J.W., "Fourier S	Series and Boun	dary Value Proł	olems", Fourth						
Edition, McGraw Hill Book Co., Singapore (198	37).	•							
2. Kandasamy, P., Thilagavathy, K., and Gunavath	y, K., "Engineer	ing Mathematics							
Volume III", S. Chand & Company Ltd., New I	Delhi (1996).	C							
3. Bali N.P. and Manish Goyal, "A Text Book of	Engineering Ma	thematics" 7th Ed	dition Lakshmi						
Publications (P) Limited, New Delhi (2007).									
4. Erwin Kreyszig, "Advanced Engineering Mathe	matics", 8 th Edit	ion, Wiley India,	2007.						
5. Ray Wylie. C and Barrett.L.C, "Advanced H	Engineering Matl	nematics" Tata	Mc Graw Hill						
Education Pvt Ltd, Sixth Edition, New Delhi, 20)12.								
E REFERENCES									
1. www.nptel.ac.in									
2. Advanced Engineering Mathematics, Prof.Jitenc	lra Kumar,								
3. Department of Mathematics, Indian Institute of		ragpur, India.							
CO vs PO Mapping									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3									1	1	
CO 2	3									1	1	
CO 3	3			2					1	1	2	
CO 4	3	1		2					1	1	1	
CO 5	3	1		2					1	1	1	
	15	2		6					3	5	6	
0- No relation 1- Low relation 2- Medium relation 3- High relation												

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

COURSE CO	DE	XNT302	L	Т	Р	С			
COURSE NA	ME	INTRODUCTION TO NANOTECHNOLOGY	3	1	1	5			
PREREQUIS	ITES	Physics and Chemistry	L	Т	Р	Н			
C:P:A		3:1:0	3	2	2	7			
COURSE OU	TCOMES	DOMAIN	LEV	VEL					
CO1	<i>Outline</i> the role of nano in civilization and <i>explain</i>								
	methods to	Cognitive	Ren	nembe	r				
	show various features	Psychomotor	Set		1				
CO2	<i>Identify</i> and <i>relate</i> the forces		Bet						
002	and	Cognitive	Ren	nembe	er				
	states	Psychomotor		Perception					
CO3	<i>List</i> and <i>describe</i> various	Cognitive		nembe					
	Nano materials	Psychomotor	-	ception					
CO4	<i>Explain</i> nanomaterial			~puo					
004	fabrication	Cognitive	Und	erstar	nd				
	and characterization methods	Psychomotor	Set	Joint					
CO5	Appraise the real world		ber						
005	applications								
	of Nano and <i>build</i> their	Cognitive	Eva	luate					
	design	Psychomotor		ginatio	m				
UNIT I	NANO EVOLUTION		0112	main	/11	15			
Nanotechnolog Definition of	D Macro Micro and Nano Scale gy in ancient history, Rise of Nanostructure; insight and in gy. Scientific revolutions in Nanot	Nanotechnology with special atervention into the nanowork	referen	ce to	Feyn	man,			
UNIT II	NANOSCALE PHENOMEN	[A				1			
energy levels,	ds (types & strength); Intermolec Molecular & crystalline structure enomena; Amorphous, crystalline NANOMATERIALS	s; particles & grain boundaries;	Super-I	Hydro					
					<u>C</u> .				
materials; cera dot, nanofoss Bionanomater	arbon nanotube, graphene. Mon mics, alloys, silicates. Quantum h ils, smart dust, porous & no ials: biomimetic systems, bio	netero-structures: quantum well, onporous inorganic materials,	quantur hydrog	m wir gel &	e, qua	ntum osols.			
copolymers.						-			
UNIT IV	NANOMATERIAL FABRIC CHARACTERIZATION	CATION AND				1			
	Top Down and Bottom up Ap	proaches, Chemical Methods,	Physic	al Me	ethods	and			
biological met									
	tion: SPM, AFM, STM, SEM, TO	-							
	X-ray diffraction, Raman Spectro	scopy, FTIR, and Fluorescent S	pectros	copy					
UNIT V	APPLICATIONS					1			

TEXT		LECTURE	TUTORIAL	PRACTICAL	TOTAL
		45	30	30	105
	Principles of Nanoscience	& Nanotechnology	," M. A. Shah & 7	Г. Ahmad, Narosa P	ublishing
	House, New Delhi, 2010				
	RENCES		1 1 ' ''' `` '' `` 1	XX7'1 X7 1' X7	0
	notechnology: Basic Scier off Smith, Overseas Press I		-	t Wilson, Kamali Ka	annangara &
	norphous and Nanocrystal			s and Applications "	, Δ
	Inoue & K. Hashimoto (E			s and Applications,	71.
	nderstanding Nanotechnol			Warner	
	Books, 2002.	-8,, 20101110 11	(),		
	troduction to Nanotechnol	ogy," Charles P. F	oole & Frank J.	Owens, Wiley-	
	Interscience, 2003.			•	
5. Nan	notechnology: A Crash Cou	urse, Raúl J. Martín	-Palma; Akhlesh l	Lakhtakia, SPIE Pre	ess 2010
e-re	esources				
http://n	upex.eu/index.php?g=text	content/materialuni	verse/sizeofthings	⟨=en	
	www.slideshare.net/niralia			C	
	www.nanoscienceworks.org			56/instructors/ITNS	-
Lecture	e-1.pdf				
http://ij	pn2.epfl.ch/lns/lectures/na	noscience/lecturence	tes/cour-1.pdf		
	iniroma2.it/didattica/NAN		-		
	sis.ru/docs/courses/17/Mat	-	11		
http://u	w.physics.wisc.edu/~himp	sel/Nano/lectures.h	ıtm		
nup.//u	mn) and ab/lna/lasturas/nor				
http://ip	pn2.epfl.ch/lns/lectures/name				
http://ij http://u	w.physics.wisc.edu/~himp	osel/Nano/Nanofabr			
http://ip http://u ppt/Sur	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.p	osel/Nano/Nanofabr hysics.wisc.edu/~hi	mpsel/Nano/Micr	oscopy.pdf	
http://ij http://u ppt/Sur www.n	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.p nano.gov/nanotech-101/spe	osel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb	mpsel/Nano/Micr .ethz.ch/woodmate	oscopy.pdf erialsscience/people	e/emilt
http://ip http://u ppt/Sur www.n http://e	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.p ano.gov/nanotech-101/spe c.europa.eu/consumers/arc	osel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb chive/safety/int_coo	impsel/Nano/Micr .ethz.ch/woodmato p/docs/pres_Freer	oscopy.pdf erialsscience/people nan.pdf	
http://ip http://u ppt/Sur www.n http://e http://o	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.p nano.gov/nanotech-101/spe c.europa.eu/consumers/arc ocw.mit.edu/courses/mecha	osel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb hive/safety/int_coo nical-engineering/2	impsel/Nano/Micr .ethz.ch/woodmato p/docs/pres_Freer 2-57-nano-to-macr	oscopy.pdf erialsscience/people nan.pdf ro-transport-process	<u>es-</u>
http://ij http://u ppt/Sur www.n http://e <u>http://o</u>	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.p ano.gov/nanotech-101/spe c.europa.eu/consumers/arc	osel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb hive/safety/int_coo nical-engineering/2 e-1-intro-to-nanoted	impsel/Nano/Micr .ethz.ch/woodmato p/docs/pres_Freer 2-57-nano-to-macr chnology-nanosca	oscopy.pdf erialsscience/people nan.pdf ro-transport-process	<u>es-</u>
http://iµ http://u ppt/Sur www.n http://e http://o spring-	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.p nano.gov/nanotech-101/spe pc.europa.eu/consumers/arc pcw.mit.edu/courses/mecha 2012/video-lectures/lectur	bsel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb chive/safety/int_coo nical-engineering/2 e-1-intro-to-nanoted LABOR	impsel/Nano/Micr .ethz.ch/woodmato p/docs/pres_Freer 2-57-nano-to-macr chnology-nanosca	oscopy.pdf erialsscience/people nan.pdf ro-transport-process	<u>es-</u>
http://iµ http://u ppt/Sur www.n http://e http://o spring-	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.phano.gov/nanotech-101/spe c.europa.eu/consumers/arc ocw.mit.edu/courses/mecha 2012/video-lectures/lectur	osel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb chive/safety/int_coo unical-engineering/2 e-1-intro-to-nanoted LABORA ure of a crystal	impsel/Nano/Micr .ethz.ch/woodmato p/docs/pres_Freer 2-57-nano-to-macr chnology-nanosca	oscopy.pdf erialsscience/people nan.pdf ro-transport-process	<u>es-</u>
http://iµ http://u ppt/Sur www.n http://e http://o spring-1	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.p ano.gov/nanotech-101/spe c.europa.eu/consumers/arc ocw.mit.edu/courses/mecha 2012/video-lectures/lectur Calculate the band structur Transport calculations with	osel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb chive/safety/int_coo nical-engineering/2 e-1-intro-to-nanoted LABOR/ ure of a crystal ith ATK	impsel/Nano/Micr .ethz.ch/woodmatop/docs/pres_Freer 2-57-nano-to-macr chnology-nanosca	oscopy.pdf erialsscience/people nan.pdf o-transport-process le-transport-phenom	<u>es-</u>
http://ip http://u ppt/Sur www.n http://e http://o spring-1	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.p ano.gov/nanotech-101/spe cc.europa.eu/consumers/arc ocw.mit.edu/courses/mecha 2012/video-lectures/lectur Calculate the band structur Transport calculations wi Phonon Band structure, E	sel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb hive/safety/int_coo nical-engineering/2 e-1-intro-to-nanoted LABOR/ ure of a crystal ith ATK Electrical and Heat 7	impsel/Nano/Micr .ethz.ch/woodmato p/docs/pres_Freer 2-57-nano-to-macr chnology-nanosca ATORY Transport of a Gra	oscopy.pdf erialsscience/people nan.pdf o-transport-process le-transport-phenom	<u>es-</u>
http://iµ http://u ppt/Sur www.n http://e http://o spring- L. 2. 3.	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.phano.gov/nanotech-101/spe ec.europa.eu/consumers/arc ocw.mit.edu/courses/mecha 2012/video-lectures/lectur Calculate the band structur Transport calculations with Phonon Band structure, H Electron-phonon couplin	osel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb hive/safety/int_coo nical-engineering/2 e-1-intro-to-nanoted LABOR/ ure of a crystal ith ATK Electrical and Heat 7 g properties of a Gr	impsel/Nano/Micr .ethz.ch/woodmato p/docs/pres_Freer 2-57-nano-to-macr chnology-nanosca ATORY Transport of a Gra	oscopy.pdf erialsscience/people nan.pdf o-transport-process le-transport-phenom	<u>es-</u>
http://iµ http://u ppt/Sur www.n http://e http://o spring- L. 2. 3. 4. 5.	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.p ano.gov/nanotech-101/spe c.europa.eu/consumers/arc ocw.mit.edu/courses/mecha 2012/video-lectures/lectur Calculate the band structur Transport calculations wi Phonon Band structure, F Electron-phonon couplin Optical Properties of Sili	sel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb chive/safety/int_coo <u>mical-engineering/2</u> <u>e-1-intro-to-nanotec</u> <u>LABOR</u> ure of a crystal ith ATK Electrical and Heat ⁷ g properties of a Gr con	impsel/Nano/Micr .ethz.ch/woodmato p/docs/pres_Freer 2-57-nano-to-macr chnology-nanosca ATORY Transport of a Gra	oscopy.pdf erialsscience/people nan.pdf o-transport-process le-transport-phenom	<u>es-</u>
http://iµ http://u ppt/Sur www.n http://e http://o spring- 1. 2. 3. 4. 5. 5.	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.phano.gov/nanotech-101/spe c.europa.eu/consumers/arc ocw.mit.edu/courses/mecha 2012/video-lectures/lectur Calculate the band structur Transport calculations wi Phonon Band structure, F Electron-phonon couplin Optical Properties of Sili Study of NiSi2–Si interfa	osel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb hive/safety/int_coo nical-engineering/2 e-1-intro-to-nanoted LABOR/ ure of a crystal ith ATK Electrical and Heat ' g properties of a Gr con ce	impsel/Nano/Micr .ethz.ch/woodmato p/docs/pres_Freer 2-57-nano-to-macr chnology-nanosca ATORY Transport of a Gra	oscopy.pdf erialsscience/people nan.pdf o-transport-process le-transport-phenom	<u>es-</u>
http://ip http://u ppt/Sur www.n http://e <u>http://o</u> <u>spring-</u> 1. 2. 3. 4. 5. 6. 7.	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.p ano.gov/nanotech-101/spe c.europa.eu/consumers/arc ocw.mit.edu/courses/mecha 2012/video-lectures/lectur Calculate the band structur Transport calculations wi Phonon Band structure, E Electron-phonon couplin Optical Properties of Sili Study of NiSi ₂ –Si interfa Study of Bi ₂ Se ₃ topologic	esel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb hive/safety/int_coo nical-engineering/2 e-1-intro-to-nanoted LABORA ure of a crystal ith ATK Electrical and Heat 7 g properties of a Gr con ce cal insulator	impsel/Nano/Micr .ethz.ch/woodmatop/docs/pres_Freer 2-57-nano-to-macr chnology-nanosca ATORY Transport of a Gra caphene Nanoribbo	oscopy.pdf erialsscience/people nan.pdf o-transport-process le-transport-phenom	<u>es-</u>
http://ip http://u ppt/Sur www.n http://e http://o spring- 1. 2. 3. 4. 5. 6.	w.physics.wisc.edu/~himp ngsoo_Na.pptx http://uw.phano.gov/nanotech-101/spe c.europa.eu/consumers/arc ocw.mit.edu/courses/mecha 2012/video-lectures/lectur Calculate the band structur Transport calculations wi Phonon Band structure, F Electron-phonon couplin Optical Properties of Sili Study of NiSi2–Si interfa	ssel/Nano/Nanofabr hysics.wisc.edu/~hi cial http://www.ifb chive/safety/int_coo nical-engineering/2 e-1-intro-to-nanoted LABORA ure of a crystal ith ATK Electrical and Heat 7 g properties of a Gr con ce cal insulator structure of random	impsel/Nano/Micr .ethz.ch/woodmatop/docs/pres_Freer 2-57-nano-to-macr chnology-nanosca ATORY Transport of a Gra caphene Nanoribbo	oscopy.pdf erialsscience/people nan.pdf o-transport-process le-transport-phenom	<u>es-</u>

Mapping of CO's with PO's

CO /PO	1	2	3	4	5	6	7	8	9	10	11	12
1	3											
2	3	2										
3	3			2			1					
4	3			2								
5	3						1			2		
Total	15	2		4			2			2		
Scaled	3	2		2			1			2		

1- No relation 1- Low relation $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

2- Medium relation

3- High relation

COURSE CO	DDE	XNT303	L	Т	Р	С	
COURSE NA	ME	Biology for Engineers	3	1	1	5	
PREREQUIS	ITES	Chemistry and Biology	L	Т	Р	H	
C:P:A		3:1:0	3	2	2	7	
COURSE OU	JTCOMES	DOMAIN	LE	VEL			
C01	<i>Identify</i> different structural components of cells and its functions and describe and relates the functions of different types of bio-molecules	Cognitive: Psychomotor:	Remember Perception				
CO2	<i>Remember and apply the</i> mechanisms underlying molecular biological processes on signal transduction and various tissues.	Cognitive: Psychomotor:			erstan apply		
CO3	<i>Understand the immune</i> system and construct the experiment on Agglutination	Cognitive: Psychomotor:	U	Remember Understand a Apply			
CO4	<i>Understand</i> Molecular structure and function of genes and <i>adapts</i> the DNA for the selected sample	Cognitive: Psychomotor:			erstan apply		
C05	<i>Understand</i> the principles of bioinformatics tools and simulate the moleculaFr structure	Cognitive: Psychomotor:		Unde	embe erstan apply	d	
cycle genes -Sodium and	Cell & Cell Function aryotic and prokaryotic cells –Cell Molecular organization of cell – Enc potassium pumps – Ca2+ATPase pu	locytosis and exocytosis – Passiv	e and	l activ	e trar	nspor	
Symport and a							
Surface Recep Identity-Interc Tissues - clas	Cell – Cell interaction and Tiss eins and Signaling between Cells - T tors Initiating the Intracellular Sig rellular Adhesion - Tight Junctions-A sification, general structure and fu natrix - its synthesis and compositio	Ypes of Cell Signaling Intracel nal Amplifying the Signal - Ex Anchoring Junctions-Communica nction. Connective tissue – gen	apress ting J teral	sion of Juncti	f Cell ons.		
UNIT III	Immunology	n, carmage structure and functi				7	
Cellular Imm	unology, antigen, antibody, major nsplantation immunity, Tumor in					mune	
UNIT IV	Molecular structure and funct	ion of genes				6	

Structure of nucleic acids - Gene, genomes, and chromosomes - DNA replication - Transcription of protein-coding genes - Formation of functional mRNA - The decoding of mRNA by tRNA - Viruses: parasites of the cellular genetic system ,HIV life cycle

purusi	tes of the containing	senetic s	ystem , m v me eyele			
UN	IT V Compu	tational	Biology			8
Bioinf	formatics Examp	les of re	elated tools (FASTA	, BLAST, BLAT	Γ, RASMOL), Da	tabases: DNA
Databa	ases - Protein Da	tabases	- DNA Sequencing	and Assembly (GENBANK, Pubr	ned, PDB) –
Protein	n folding – Popula	tion biol	<u>ogy – Ethics in biolog</u>	y and bioenginee	ering	
			LECTURE	TUTORIAL	PRACTICAL	TOTAL
			45	15	30	90
ТЕХТ	ſ					
S. Thy	yagaRajan, N. Selv	amuruga	an, M. P. Rajesh, R. A	. Nazeer, Richard	l W. Thilagaraj, S.	Barathi, and
M. K.	Jaganathan, "Biol	ogy for I	Engineers," Tata McG	raw-Hill, New D	elhi, 2012.	
DEEE						
	ERENCES	T T	1 11 1 . 0.	((D) 1) .	N XX XX T	10 11
	•	L. Tym	oczko and Lubert Stry	er, "Biochemistr	y," W.H. Freeman	and Co. Ltd.,
	1., 2006.	1 0	1		10	
			iology," MCGraw-Hil			
3. Jon	Cooper, "Biosens	ors A Pr	actical Approach" Bel		004	
			LABORA	ΓORY		
1.	Microscopic Me	easureme	ents			
2.	Cellular Carboh	ydrates				
3.	Mitosis And Cy	tokinesi	S			
4.	Preparation Of	Epithelia	ll Cells And Microsco	py Analysis		
5.	Staining and Hi	stochem	istry			
6.	Agglutination R	eaction				
7.	Extraction Of D	NA				
8.	Genbank.					
9.	Protein Data Ba	nk				
4.0		~				

10. Use of BLAST, FASTA (Nucleic Acids & Protiens)

Mapping of CO's with PO:

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS1	PS2
CO1	1	1	1	1	1	-	1	-	-	-	-	-	-	-
CO2	1	1	1	2	1	-	1	-	-	-	-	-	-	-
CO3	2	3	1	1	2	-	1	-	-	-	-	-	-	-
CO4		3	1	2			3	-	-	-	-	-	-	-
CO5	3	3	1	2	1		2	-	-	-	-	-	-	-
Total	7	11	5	8	5		8		-	-	-	-	-	-
Scaled to 0,1,2,3 scale	2	3	1	2	1		2							

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

	DE	XNT304	L	Т	Р	С	
COURSE NA	ME	FLUID MECHANICS	3	1	0	4	
PREREQUIS	ITES	XBW103	L	Т	Р	Н	
C:P:A		3:0:0	3	2	0	5	
COURSE OU	TCOMES	DOMAIN		LE	VEL		
C01	An <i>understanding</i> of fluid Mechanics fundamentals, including concepts of mass and momentum conservation.	Cognitive			ering, nding		
CO2	An <i>ability</i> to apply the Bernoulli equation to solve problems in fluid mechanics.	Cognitive	Ren	Applying, Remembering, Understanding			
CO3	An <i>ability</i> to apply control volume analysis to problems in fluid mechanics	Cognitive	Ren	Applying, Remembering, Understanding			
CO4	An <i>ability</i> to use potential flow theory to solve problems in fluid mechanics	Cognitive	Ren	Applying, Remembering, Understanding			
CO5	An <i>ability</i> to perform Dimensional analysis for problems in fluid mechanics.	Cognitive	Ren	Applying, Remembering, Understanding			
UNIT I	INTRODUCTION				<u>8</u>		
classification of	rties of fluids, Classification of of fluids, Pressure and temperature de fluid flow in Chemical Engineering.	ependence, Types of flow, Line					
UNIT II Hydrostatic eq	FLUID STATISTICS AND ITS A uilibrium, Parametric equation, Hyd auge and absolute pressure, manome	lrostatic equilibrium in centrif	-		Conce	-	
UNIT II Hydrostatic eq	uilibrium, Parametric equation, Hyd auge and absolute pressure, manome BASIC EQUATIONS OF FLUID	lrostatic equilibrium in centrif ters, pressure measurement by	-		Conce	-	
UNIT II Hydrostatic eq atmospheric, g manometer. UNIT III Basic equation	uilibrium, Parametric equation, Hycauge and absolute pressure, manome	 drostatic equilibrium in centrifiters, pressure measurement by D FLOW AND FLOW ion, equation of motion, Floriton, Flo	simple	e and	Conce differ 6	entia	

nano fluidics -Active control of flow patterns, Carbon nano pipette and Cellular probe, <u>Electrokinetics</u> <u>and Dielectrophoresis</u>, Liquid Cell Electron Microscopy (the Nanoaquarium), Magneto-Hydrodynamics (MHD), Microfluidic Pumps, Stirrers, Microswimmers (C. elegans), Nanowalkers (Molecular Motors), Point of Care Diagnostics (Lab on Chip), Energy Storage and Desalination

UNIT V BOUNDARY LAYER , DIMENSIONAL ANALYSIS, FLOW PAST IMMERSED BODIES AND TRANSPORTATION OF FLUIDS

15

Concept of hydrodynamic boundary layer, Growth over a flat plate, Different thickness of boundary layer, Fundamental dimensions of quantities, Dimensional homogeneity, Dimensional analysis by Rayleigh's method and Buckingham's method, Dimensionless numbers. Drag and drag coefficient, Flow through beds of solids, Motion of particles through fluids, fluidization, pipes and tubings, Joints and fittings, Major and minor losses, Different types of valves, Pumps: Centrifugal pump, Performance of centrifugal pumps

	LECTURE	TUTORIAL	TOTAL
	45	15	60
TEXT			

- 1. Noel. D. Nevers, "Fluid Mechanics for Chemical Engineers", McGraw Hill, 3rd International Edition, 2005
- 2. McCabe and Smith. Unit operations in Chemical Engineering, McGraw Hill, Co.2005.
- 3. R K Bansal, "A Textbook of Fluid Mechanics and Hydraulic Machines", 9th ed. Laxmi Publications, New Delhi, 2004

4. R.W. Fox, A.T. MacDonald and P.J. Pritchard, Introduction to Fluid Mechanics Wiley, 2008

REFERENCES

1. M. Coulson, J.F. Richardson, with J.R. Backhurst and J.H. Harker, Coulson "Richardson, *Chemical Engineering*, Volume-1", 6th ed., Butterworth-Heinemann, 1999

							ping v							
COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	PO ₉	PO 10	PO 11	PO 12	PSO ₁	PSO ₂
CO ₁	2	2	3	3	1	1	-	2	-	3	1	3	2	2
CO ₂	3	3	1	1	1	-	-	1	-	2	3	2	3	1
CO ₃	3	2	1	1	1	-	-	1	-	3	1	3	3	1
CO ₄	2	3	1	3	1	-	-	1	-	2	3	2	3	2
CO ₅	3	2	3	3	1	1	-	1	-	3	2	1	2	2
Total	13	12	9	11	5	2	-	6	-	13	10	11	13	8
Scaled	3	3	2	3	1	1	-	2	-	3	2	3	3	2

TABLE 1: Mapping of CO's with PO'S:

2- No relation 1- Low relation 1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3 2- Medium relation

3- High relation

COURSE C	ODE	XCHOE1		L	Т	Р	С		
COURSE N	AME	MASS TRANSFER FUNDAMEN	NTALS	3	0	0	3		
PREREQUI	SITE			L	Т	Р	Н		
C:P:A				3	0	0	3		
Course Outo At the en		, the students should be able to	DOMAIN		LEV	VEL			
CO1	transfer and <i>ca</i>	asic principles in diffusional mass <i>lculate</i> the rate of the mass transfer ensional steady state diffusion	Cognitive	Comprehension and apply					
CO2		operations of Distillation and d <i>calculate</i> number trays for ver	Cognitive	C	Comprehensio and apply				
CO3		salient features of Separation by chromatographic separation and ching	Cognitive	Comprehensio					
CO4		salient features and mechanism ying and crystallization	Cognitive	C	ompre	hens	ion		
COURSE C	ONTENT								
UNIT I	Mass Transfe	r and Diffusion				9			
state molecu diffusivity m	ılar diffusion t neasurements –	sion in fluids and solids. One dime hrough stationary media – molecu mass transfer analogies – inter pha face – two film theory and overall r	lar diffusion in l se mass transfer, r	amin node	ar flo ls of	ow – mass	-		
UNIT II	Distillation an	d Absorption				9			
Extractive an Simple prob	nd molecular dis lems. Gas absor	 methods of distillation – simple, stillation – Continuous distillation – rption: single and multi-component absorbers – simple problems. 	McCabe - Thiele m	netho	d. Pri	ncipl	es –		
UNIT III	Extraction and	d Leaching				9			
II constitute	ium – staged a	nd continuous extraction concepts,				<u> </u>			
design consi		1 – liquid equilibria, leaching prin eaching and washing - simple proble		nts 1	or le	achin	g –		

-	and its types -sorbents – equilibrium consideration- kinetic and transport considerations ems. Ion Exchange cycle – Chromatographic separations.	; —
UNIT V	Drying And Crystallization 9	
drying equip formation an	mechanism of drying – drying characteristics of materials -batch and continuous drying oment – design and performance of various drying equipments – simple problem. Nucl d crystal growth – theory of crystallization – Growth co efficient and factors affecting the tion – batch and continuous industrial crystallizers.	lei
	L=45 hrs	
Text books		
1. Seader	and Henley, "Separation Process Principles", John Wiley and Sons Inc.2006.	
2. Treyba	l R.E., "Mass Transfer Operations", Third Edition, McGraw Hill, 1980.	
References		
	koplis C.J., "Transport Processes and unit Operations" 3 rd Edition, Prentice Hall 2003. son and Richardson, "Chemical Engineering" Vol. I & II, Asian Books Pvt.ltd., 1998.	

Т

Г

 McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering" 5th Edition, McGraw Hill, 1993.

Mapping of Course Outcomes with Program Outcomes (Course Articulation Matrix)

	P01	P02	P03	P04	P05	906	707	PO8	60d	P010	P011	P012
CO1	1	2	3	3	0	0	0	0	0	0	_	-
CO2	-	2	2	2	1	0	0	0	0	0	0	0
CO3	0	1	2	2	1				1	0	0	0
CO4	-	2	2	1	1	0	0	0	0	0	0	0
0 – No relatio	0 – No relation 1 - Low, 2 – Medium, 3 – High											

COURSE C	CODE	XEP 306		L	Т	Р	С	
COURSE N	IAME	ENTREPRENEURS DEVELOPMENT	HIP	2	0	0	2	
PREREQU	ISITES	NIL	L	Т	Р	SS	Н	
C:P:A		2.7:0:0.3	2	0	0	1	3	
COURSE C	DUTCOMES	DOMAIN		LE	VEL			
C01	<i>Recognise</i> and <i>describe</i> the personal traits of an entrepreneur.	Affective Cognitive			ceivin dersta	ig anding		
CO2	<i>Determine</i> the new venture ideas and <i>analyse</i> the feasibility report.	Cognitive			dersta alysin	anding 1g		
CO3	<i>Develop</i> the business plan and <i>analyse</i> the plan as an individual or in team.	Affective Cognitive			ceivin alysir	0		
CO4	<i>Describe</i> various parameters to be taken into consideration for launching and managing small business.	Cognitive	Understanding					
CO5	<i>Explain the</i> technological management and Intellectual Property Rights	Cognitive		Understanding				
UNIT I	ENTREPRENEURIAL TRAIT	IS AND FUNCTIONS	5				9	
-	of Entrepreneurship; competen rship Development; Role of rship as a career and national deve	Family and Society						
UNIT II	NEW PRODUCT DEVELOPN CREATION		E				9	
	Concept development; Sources and Report ;Project Profile; processes in						- • •	
UNIT III	ENTREPRENEURIAL FINAN	NCE					9	
	recasting for a new venture; Finan Angel Investors and Venture Capita	d; Government support in		-		Sour	ces of	
UNIT IV	LAUNCHING OF SMALL BU MANGEMENT	JSINESS AND ITS					9	
-	Planning - Market and Channel Monitoring and Evaluation of Busi		-				-	
UNIT V	TECHNOLOGY MANAGEM	ENT IDD DODTFOL I	O FOP				9	

NEW PRODUCT VENTURE			~ .
Technology management; Impact of technology on s	•		
supporting Technology Development and IPR protection	on; Entrepreneur	ship Developmer	nt Training and
Other Support Services.	LECTUDE	TUTODIAI	ТОТАТ
	LECTURE 45	TUTORIAL 0	TOTAL 45
TEXT BOOKS	45	U	45
1. Hisrich, 2016, <i>Entrepreneurship</i> , Tata McGraw Hill, 1	New Delhi.		
2. S.S.Khanka, 2013, Entrepreneurial Development, S.C.		any Limited Nev	v Delhi
REFERENCES			v Denn.
1. Mathew Manimala, 2005, Entrepreneurship Theory a.	t the Crossroads	, Paradigms & P	raxis,
Biztrantra ,2nd Edition.		C	
2. Prasanna Chandra, 2009, Projects – Planning, Analys	is, Selection, Imp	plementation and	
Reviews, Tata McGraw-Hill.			
3. P.Saravanavel, 1997, Entrepreneurial Development, E	Ess Pee kay Publ	ishing House, Ch	ennai.
4. Arya Kumar, 2012, Entrepreneurship: Creating and I	•	-	
Organisation, Pearson Education India.	U		
5. Donald F Kuratko, T.V Rao, 2012, Entrepreneurship	: A South Asian	perspective, Cens	gage
Learning India.			
6. Dinesh Awasthi, Raman Jaggi, V.Padmanand, Sugges	ted Reading / Re	eference Material	!
for Entrepreneurship Development Programmes (EDI	U U	•	
Entrepreneurship Development Institute of India, Ahm			
http://www.ediindia.org/doc/EDP-TEDP.pdf			
E REFERENCES			
1. Jeff Hawkins, " Characteristics of a successful entrepr	eneur", ALISON	N Online	

- 1. Jeff Hawkins, "Characteristics of a successful entrepreneur", ALISON Online entrepreneurship courses, "https://alison.com/learn/entrepreneurial-skills
- 2. Jeff Cornwall, "Entrepreneurship -- From Idea to Launch", Udemy online Education, https://www.udemy.com/entrepreneurship-from-idea-to-launch/

СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O 1	PS O 2
1	-	-	1	1	1	0	2	1	1	1	2	1	0	0
2	-	-	1	1	-	1	1	1	0	1	1	1	0	0
3	-	-	2	2	3	3	2	3	3	3	3	3	0	1
4	-	1	1	3	0	0	0	0	0	1	2	0	0	0
5	1	1	1	3	0	2	0	0	1	2	2	1	0	0
Total	1	2	6	10	4	6	5	4	5	8	10	6	0	0
Scale d to 0,1,2,	1	1	1	2	1	1	1	1	1	2	2	2	0	1

Mapping of COs with POs

3													
4 7 14													

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0 – No Relation, 1- Low Relation, 2- Medium Relation, 3- High Relation

COURSE CO	DDE	XGS307	L	Т	Р	SS	С		
COURSE NA	ME	INTERPERSONAL COMMUNICATION	0	0020TPSS10022 $leveeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee$			0		
PREREQUIS	SITES	Nil	L	Т	Р	SS	Н		
C:P:A		2:0:0	0	0	0	2	2		
COURSE OU	UTCOMES	DOMAIN		LEV	VEL				
C01	<i>Recognize</i> culture and a need for interpersonal communication.	Cognitive		Ren	nembe	er			
CO2	<i>Demonstrate</i> the need for effective communication between two people.	Cognitive		Und	Understand				
CO3	<i>Explain</i> family and social relationships and need for socialization.	Cognitive		Und	Understand				
CO4	<i>Justify</i> the IP principles as to how to reduce and repair conflict in interpersonal relationships.								
CO5	<i>Make use</i> of effective and appropriate language at various interpersonal situations to avoid conflict.	Cognitive		App	oly				
UNIT I	UNIVERSALS OF INTERPERSO	DNAL					5		
	nterpersonal Communication - cultu communication.	re in interpersonal comm	nunica	ation	and 1	the se	elf in		
UNIT II	APPREHENSION AND ASSERT	IVENESS					5		
	ss and assertiveness - perception in in communication.	terpersonal communication	n - lis	tening	g in				
UNIT III	VERBAL AND NON VERBAL M	IESSAGES					5		
Relationship a	and involvement - relationship mainte	nance and repair.							
UNIT IV	POWER IN INTERPERSONAL	RELATIONSHIP					5		
Conflict in int	terpersonal relationship - friends and r	elatives - primary and fam	ily re	lation	ships	•			
UNIT V	SOCIALIZATION						10		
Need for socia	alization and benefits of socialization	among students.							

	Self-Study	TOTAL								
	30	30								
TEXT BOOKS										
1. DeVito, Joseph, The Interpersonal Communication Book, 13th Edition -, Published										
by Longman Pub Group, Updated in its 13 th edition,2000										
2. Kathleen S. Verderber, Inter-Act: Interpersonal Communication	Concepts, Skills a	ind								
Contexts, Rudolph F. Verderber, 2000	-									
REFERENCES										
1. Clifford Whitcomb, Effective Interpersonal and Task Communic	ation Skills for E	ngineers,								

Atlantic Publishers. 2010

CO vs PO mapping

					PO	0					PS	0
	1	2	3	4	5	6	7	8	9	10	1	2
CO1	0	0	0	0	2	0	0	0	0	0	0	0
CO2	1	0	0	0	0	0	0	0	0	0	0	0
CO3	0	0	0	0	0	0	0	0	0	0	0	0
CO4	0	0	0	0	0	0	0	0	0	2	0	0
CO5	0	0	0	0	0	0	0	0	1	0	0	0
Total	1	0	0	0	2	0	0	0	1	2	0	0
Scaled Value	1	0	0	0	1	0	0	0	1	1	0	0

0- No relation 1- Low relation 1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3

2- Medium relation

3- High relation

SYLLABUS

SEMESTER - IV

COURSI	E CODE		XRP401	XRP401					
COURSI	E NAME		RANDOM PROCESSES		2	1	0	3	
С	Р	Α	2.5 : 0.25 : 0.25		L	Т	Р	Н	
					2	2	0	4	
PRERE(UISITE:	Basic co	oncepts of Probability theory, I	Differentiation and I	Integration	n			
COURSI	E OUTCO	MES		Domain	Leve	1			
CO1	Defin	e basic c	concepts of probability	Cognitive	Rem	ember	ing		
	theor	y and to .	Find their Statistics of one				-		
	Dime	nsional c	listribution functions.						
CO2	Find	the marg	ginal and conditional	Cognitive	Rem	ember	ing		
	distri	bution ar	nd to Find correlation						
	Coeff	ficients a	nd regression equation.						
			n the class discussion		Responds			to	
			sional random variable.	Affective	phenomena				
CO3			the concepts and properties of	Cognitive	Understanding				
			arkov, Poisson and						
		0	raph process. Reproduce the						
	Mark	ov mode	1.	Psychomotor	Guid	ed Res	sponse	;	
CO4			lain the concepts of auto	Cognitive	Rem	ember	ing		
	corre	lation an	d cross correlation and		Unde	Understanding			
			er and cross spectral density.						
CO5			ciples of continuous and	Cognitive	Rem	ember	ing		
			signals and to <i>Find</i>						
		-	f linear & time-invariant						
	Syste								
UNIT I			ARIABLES					12	
			ndom variables – Moments -	_	-	ons –	Binor	nial,	
Poisson,	Geometric	, Uniforr	n, Exponential, Gamma, Weibu	ill and Normal distr	ibutions.				
UNIT II	TWO)-DIME	NSIONAL RANDOM VARIA	ABLES				12	
Joint dist	ributions	– Margi	nal and Conditional distribution	ons – Covariance	– Correla	tion a	nd Li	near	
regression	n .Central	limit the	orem (for independent and iden	tically distributed ra	andom va	riables	5).		
UNIT II	I RAN	DOM P	ROCESSES					12	
Classifica	ntion – Sta	tionary p	rocess – Markov process - Pois	son process – Rand	lom telegr	aph pr	ocess.	,	
UNIT IV	COR	RELAT	ION AND SPECTRAL DEN	SITIES				12	
Auto-corr	relation fu	nctions -	- Cross-correlation functions -	Properties - Power	r spectral	densit	$y - C_1$	ross-	
spectral d	ensity – P	roperties	- Wiener-Khinchine relation, t	theorem.	-				
ÚNIT V			STEMS WITH RANDOM IN					12	
Linear tir	ne invaria	nt syster	n – System transfer function –	Linear systems wi	th randor	n inpu	ts – A	uto-	
correlatio	n and Cro	ss-correl	ation functions of input and out	put – White noise.		-			

	LECTURE	TUTORIAL	TOTAL
	30	30	60
TEXT			
1. Veerarajan .T, Probability, "Statistics and Random Pr	ocesses", Tata N	AcGraw Hill,	
3rd edition, (2008).			
REFERENCES			
1. Yates, R.D. and Goodman, D.J., "Probability and	Stochastic Proce	esses", John Wiley	y and Sons,
2nd edition, (2005).			
2. Stark, H. and Woods, J.W., "Probability and Ran	ndom Processes	with Applicatio	ns to Signal
Processing", Pearson Education, Asia, 3rd edition,	(2002).		
3. Miller, S.L. and Childers, D.G., "Probability and Ra	andom Processe	s with Application	ons to Signal
Processing and Communications", Academic Press	, (2004).		
4. Hwei Hsu, "Schaum's Outline of Theory and Problem	ems of Probabil	ity, Random	
Variables and Random Processes", Tata McGraw I	Hill edition, New	v Delhi, (2004).	
5. Peebles, P.Z., "Probability, Random Variables and F	Random Signal F	rinciples",	
Tata McGraw Hill, 4th edition, New Delhi, (2002).			
6. Kandasamy.P, Thilagavathy.K,Gunavathy.K, "Prob	ability, Random	Variables and	
Random Processes", S.Chand & Company Ltd, (200	8).		
E REFERENCES			
www.nptel.ac.in			
1. Advanced Engineering Mathematics, Prof. Somes	n Kumar		

Department of Mathematics, Indian Institute of Technology, Kharagpur.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3									1		1
CO 2	3									1		1
CO 3	3			2	2					1		2
CO 4	3			2						1		1
CO 5	3			2						1		2
Total	15	1	0	6	0	0	0	0	0	5	0	7
Scaled	3	1	0	2	2	0	0	0	0	1	0	2
Value												

TABLE 1: CO VS PO Mapping

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, 11 and above $\rightarrow 3$.

0 – No relation, 2 – medium relation, 3 – high relation

COURSE	CODE	XUM402		L	Т	Р	С	
COURSE	NAME	ENVIRONMENTAL SCIENC	CE AND	3	0	0	3	
PRE REQ	UISITE	Basic concepts of engineering, of and ethics	quality management	L	Т	Р	н	
C:P:A		2:0.5:0.5		3	0	0	3	
COURSE	OUTCOMI	ES	DOMAIN	LEV	EL			
CO1		<i>and</i> the natural environment and onships with human activities.	Cognitive	Remembering				
CO2		erize and analyze human impacts vironment.	Cognitive Affective	Understanding				
CO3	from mu	<i>facts</i> , concepts, and methods tiple disciplines and <i>apply</i> to nental problems.	Cognitive Psychomotor	Understanding				
CO4	Acquire problem- with labo compute	practical skills for scientific solving, including familiarity pratory and field instrumentation, r applications, statistical and g techniques.	Cognitive	Unde Apply	rstandiı y	ng		
CO5	research collection interpreta <i>Design</i> a technolog managen and for th	and and <i>implement</i> scientific strategies, including n, management, evaluation, and ation of environmental data. nd evaluate strategies, gies, and methods for sustainable nent of environmental systems he remediation or restoration of environments.	Cognitive	Unde	rstandiı	ng, ap	ply	
UNIT I	INTROI ENERG	DUCTION TO ENVIRONMEN' Y	TAL STUDIES AND		12			
exploitation tribal peop conflicts ov environmen food proble pesticide pr renewable resources: – Role of a lifestyles.	n, deforestat le – Water rever water, da ntal effects c ems, changes roblems, wa and non rene Land as a res n individual	mportance – Need for public awar ion, case studies. Timber extractio esources: Use and over-utilization ums-benefits and problems – Mine of extracting and using mineral res is caused by agriculture and overgr ter logging, salinity, case studies – ewable energy sources, use of alter source, land degradation, man indu- in conservation of natural resource	n, mining, dams and the of surface and ground v ral resources: Use and e ources, case studies – F azing, effects of modern Energy resources: Gro mate energy sources. ca uced landslides, soil ero	eir effec vater, fle exploitat ood rese n agricu wing en se studi sion and	ts on fo oods, du ion, ources: lture, fe ergy ne es – La d desert for sus	worests rough Worl ertiliz eeds, nd ificat	t, d er- ion	
UNIT II	ECOSY	STEMS AND BIODIVERSITY			12			

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers - Energy flow in the ecosystem - Ecological succession - Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries) - Introduction to Biodiversity - Definition: genetic, species and ecosystem diversity - Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

ENVIRONMENTAL POLLUTION UNIT III

8

7

6

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards - Soil waste Management: Causes, effects and control measures of urban and industrial wastes - Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

Urban problems related to energy - Water conservation, rain water harvesting, watershed management -Resettlement and rehabilitation of people; its problems and concerns, Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation -Consumerism and waste products - Environment Production Act - Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest

Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness. HUMAN POPULATION AND THE ENVIRONMENT UNIT V

Population growth, variation among nations - Population explosion - Family Welfare Programme -Environment and human health - Human Rights - Value Education - HIV / AIDS - Women and Child Welfare - Role of Information Technology in Environment and human health - Case studies.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	00	00	45

TEXT

- Gilbert M.Masters, Introduction to Environmental Engineering and Science, Pearson 1. Education Pvt., Ltd., Second Edition, ISBN 81-297-0277-0, 2004.
- Miller T.G. Jr., Environmental Science, Wadsworth Publishing Co. 2.
- 3. Townsend C., HarperJ and Michael Begon, Essentials of Ecology, Blackwell Science.
- Trivedi R.K. and P.K. Goel, Introduction to Air Pollution, Techno-Science Publications. 4.

REFERENCES

- Trivedi R.K., Handbook of Environmental Laws, Rules, Guidelines, Compliances and 1. Standards, Vol. I and II, Enviro Media.
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, Environmental Encyclopedia, Jaico Publ., House, Mumbai, 2001.
- 3. Wager K.D., Environmental Management, W.B. Saunders Co., Philadelphia, USA, 1998.
- S.K.Dhameja, Environmental Engineering and Management, S. K. Kataria and Sons, 4. New Delhi, 1999.

E REFERENCES

www.nptel.ac.in

TABLE 1: CO VS PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	3									1		1
CO 2	3									1		1
CO 3	3	1	1				1	0	1	2		2
CO 4	1	1	1	1	1		2	0	1	2	1	1
CO 5	2									1		2
Total	12	2	2	1	1	0	3	0	2	7	0	7
Scaled Value	3	1	1	1	1	0	1	0	1	2	1	2

 $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, 11 and above $\rightarrow 3$.

0-No relation, 2-medium relation, 3-high relation

COURSE C	CODE	XNT403		L	Т	Р	С				
COURSE N	JAME	PRINCIPLES OF CHEMICAL EN	NGINEERING	3	1	1	5				
PREREQU	ISITES	XAC204		L	Т	Р	Н				
C:P:A		3:1:1		3	2	3	7				
COURSE (DUTCOME	S	DOMAIN	LEV	VEL						
CO1	in basic chemical calculations and Calculate the composition of solutions and gas mixtures in different system of units andCognitiveCO2Solve the material balances for distillation,Cognitive						Receiving Analyzing				
CO2	extraction	material balances for distillation, n, mixing, absorption and evaporation s and <i>develop</i> block diagrams	Cognitive Affective		ersta eivin	nding g					
CO3	-	he basic principles of chemical and reactors. <i>Operate</i> batch and Plug tors	Cognitive Psychomotor			nding espons					
CO4	of fluids a	the characteristics of different types and filtration systems. <i>Calibrates</i> the ers, <i>handle</i> pumps and filtration	Cognitive Psychomotor	Perc	Understanding Perception Mechanism						
CO5	heat trans	the mechanism of different modes of fer and <i>measure</i> rate of heat transfer schange equipments	Cognitive Psychomotor		Understanding, Mechanism						
UNIT-I	INTE	RODUCTION TO ENGINEERING (MENSIONS	CALCULATIONS,	UNITS	5	12 +	5				
Unit conver	rsions, stoi	nd dimensions, Fundamental and deriv chiometric principles; Basic chemica and its application, Dalton law, Raoult	al calculations – so								
UNIT –II		IAL BALANCES				12 +	6				
solving mate Extractors, c	erial balance Iryers, evap	at chemical reactions: Process flow she e problems, Material balance of unit op orators and mixing; Material Balances	perations like distillat	ion col	umns						
UNIT-III		CAL REACTION ENGINEERING				12 +					
-	First order	Endothermic and Exothermic reaction and second order reaction kinetics –			•						
UNIT-IV		LE TECHNOLOGY				12 +					
Particle cha Liquid Filtra		n – Classification of solid particles- l ters.	Particle size reduction	on and	enla	rgeme	nt				
UNIT-V	1	RANSFER				12 +	7				
	wall - forc	ion, Convection and Radiation – resist ed and free convection mechanism - I					-				

						PRAC	TICAI	Ĺ				-	
S. NO				NAM	E OF 1	THE E	XPER	IMEN	Г			(CO
1.	Batch r	eactors										3	
2.	Plug flo											3	
3.	Contin			nk reac	tors							3	
4.	Study of Fluid flow characteristics												
5.	Calibration of Orifice meter												
6.	Determination of Coefficient of discharge of Venturimeter												
7.	Particle size reduction using Jaw crushers												
8.	Study of	on Plate	and Fr	ame fil	lter pre	SS						4	
9.	Study on Plate and Frame filter press Particle size analysis											4	
10.	Experin	ments o	n Four	ier's La	aw							5	
11.	Heat tra	ansfer s	tudies	through	n force	d conve	ection					5	
12.	Heat tra	ansfer s	studies	on Dou	ıble pip	be heat	exchan	gers				5	
LECTU	RE		TU	TORIA	٩L		I	PRACT	ΓICAL	r	ΓΟΤΑL		
45	30 30 105												
TEXT B													
TEXT B 1. K.V. 2. McC Editi REFER 1. C	Narayan Cabe W. on,Tata I ENCES: Geankopl	an and L., Sn McGrav : is C.J. ^o	Lakshn nith J. w – Hil " Trans	C. and 1, 2004 port Pr	1 Hari	s and U	ocess C , "Uni	Calculat it Ope eration	ration "" 4 th	rentice in Ch Edition	Hall, 200 emical	Enginee e Hall, 2	007.
TEXT B 1. K.V. 2. McC Editi REFER 1. C 2. C	Narayan Cabe W. On,Tata ENCES Geankopl Coulson J	an and L., Sn McGrav : is C.J. ^o .M. and	Lakshn nith J. w – Hil " Trans d Richa	C. and <u>1, 2004</u> port Pr urdson J	1 Hari ocesse: J.F., " (s and U Coulsor	ocess C , "Uni nit Op	Calculat it Ope eration	ration "" 4 th	rentice in Ch Edition	Hall, 200 emical	Enginee e Hall, 2	007.
TEXT B 1. K.V. 2. McC Editi Editi REFER 1. 2. C 3 1. 1. R	Narayan Cabe W. on,Tata I ENCES: Geankopl	an and L., Sn McGrav : is C.J. ' (.M. and n,Butte nsal, ''2	Lakshn nith J. w – Hil " Trans d Richa er woth A <i>Text</i> l	C. and 1, 2004 port Pr rdson J – Hein book o	d Hari ocesses J.F., " (emann of Fluid	ott P, s and U Coulsor Publisi	finit Op and R hers,20	Calculat it Ope eration ichards 004.	with the son's C	rentice in Ch Edition hemica	Hall, 200 emical , Prentice l Engine	Enginee e Hall, 2 ering"	007. Vol-I
TEXT B 1. K.V. 2. McC Editi REFER 1. C 2. C 3 1. R P	Narayan abe W. on,Tata ENCES Geankopl Coulson J G rd Editio K Bar Publicatio	an and L., Sn McGrav is C.J. ' J.M. and n,Butte nsal, "2 ons, Ne	Lakshn nith J. w – Hil " Trans d Richa er woth A <i>Text</i> l	C. and 1, 2004 port Pr rdson J – Hein book o	d Hari ocesses J.F., " (emann of Fluid	ott P, s and U Coulsor Publisi	finit Op and R hers,20	Calculat it Ope eration ichards 004.	with the son's C	rentice in Ch Edition hemica	Hall, 200 emical , Prentice l Engine	Enginee e Hall, 2 ering"	007. Vol-I
TEXT B 1. K.V. 2. McC Editi Editi REFER 1. 2. C 3 1. 1. R	Narayan abe W. on,Tata ENCES: Geankopl Coulson J Coulson	an and L., Sn McGrav is C.J. M. and m,Butte nsal, "2 ons, Nev ES:	Lakshn nith J. w – Hil " Trans d Richa er woth A <i>Texti</i> w Delh	C. and 1, 2004 port Pr rdson J – Hein book o	d Hari ocesses J.F., " (emann of Fluid	ott P, s and U Coulsor Publisi	finit Op and R hers,20	Calculat it Ope eration ichards 004.	with the son's C	rentice in Ch Edition hemica	Hall, 200 emical , Prentice l Engine	Enginee e Hall, 2 ering"	007. Vol-I
TEXT B 1. K.V. 2. McC Editi REFER 1. C 2. C 3 1. P E-REFE	Narayan Cabe W. Con,Tata D ENCES Geankopl Coulson J Coulson J Coul	an and L., Sn McGrav is C.J. M. and m,Butte nsal, "2 ons, Nev ES:	Lakshn nith J. w – Hil " Trans d Richa er woth A <i>Texti</i> w Delh	C. and <u>1, 2004</u> port Pr rdson J – Hein book o i, 2004	d Hari ocesses J.F., " (emann <i>f Fluid</i>	ott P, s and U Coulsor Publis d Mech	finit Op and R hers,20	Calculat it Ope eration Lichards 004. <i>and F</i>	ration ^{""} 4 th son's C Hydrau	rentice in Ch Edition hemica	Hall, 200 emical , Prentice l Engine	Enginee e Hall, 2 ering"	007. Vol-I
TEXT B 1. K.V. 2. McC Editi REFER 1. C 2. C 3 1. R P E-REFE http://www	Narayan Cabe W. Con,Tata D ENCES Geankopl Coulson J Coulson J Coul	an and L., Sn McGrav is C.J. M. and m,Butte nsal, "2 ons, Nev ES:	Lakshn nith J. w – Hil " Trans d Richa er woth A <i>Texti</i> w Delh	C. and <u>1, 2004</u> port Pr rdson J – Hein book o i, 2004	d Hari ocesses J.F., " (emann <i>f Fluid</i>	ott P, s and U Coulsor Publisi	finit Op and R hers,20	Calculat it Ope eration Lichards 004. <i>and F</i>	ration ^{""} 4 th son's C Hydrau	rentice in Ch Edition hemica	Hall, 200 emical , Prentice l Engine	Enginee e Hall, 2 ering"	007. Vol-I
TEXT B 1. K.V. 2. McC Editi REFER 1. C 2. C 3 1. P E-REFE http://ww	Narayan Cabe W. Con,Tata D ENCES Geankopl Coulson J Coulson J Coul	an and L., Sn McGrav is C.J. M. and m,Butte nsal, "2 ons, Nev ES:	Lakshn nith J. w – Hil " Trans d Richa er woth A <i>Texti</i> w Delh	C. and <u>1, 2004</u> port Pr rdson J – Hein book o i, 2004	d Hari ocesses J.F., " (emann <i>f Fluid</i>	ott P, s and U Coulsor Publis d Mech	finit Op and R hers,20	Calculat it Ope eration Lichards 004. <i>and F</i>	ration ^{""} 4 th son's C Hydrau	rentice in Ch Edition hemica	Hall, 200 emical , Prentice l Engine	Enginee e Hall, 2 ering"	007. Vol-I
TEXT B 1. K.V. 2. McC Editi REFER 1. C 2. C 3 1. P E-REFE http://ww	Narayan Cabe W. Con,Tata D ENCES Geankopl Coulson J Coulson C C C C C C C C C C C C C C	an and L., Sn McGrav is C.J. ' M. and on,Butte nsal, ''2 ons, Nev SS: obu.in/s	Lakshn nith J. w – Hil " Trans d Richa er woth A <i>Texti</i> w Delh p/pc/	C. and 1, 2004 port Pr urdson J – Hein book of i, 2004 TA	d Hari	s and U Coulsor Publis d Meci	ocess C , "Uni init Op n and R hers,20 <i>hanics</i>	Calculat it Ope eration ichards 004. and F	ration "' 4 th son's C Hydrau ing	rentice in Ch Edition hemica	Hall, 200 emical , Prentice l Engine chines",	Enginee e Hall, 2 ering" 9th ed.	007. Vol-I Laxm

CO 2	3	1	2				
CO 3	3	1	2				
CO 4	3	1	2				
CO 5	3	1	2				
Total	15	4	9				
Scaled	3	1	2				
Value							

1-5 = 1, 6-10 = 2, 11-15 = 3

0-No relation, 1-Low relation, 2-Medium relation, 3- High relation

COL	JRSE C	CODE	XNT404		L	Т	Р	С		
τοι	JRSE N	IAME	NANOAPPLICATIONS		3	0	0	3		
PRE	REQU	ISITE	Applied Physics, Applied Chemistry, B Engineers ,Introduction to Nanotechno							
С	Р	Α			L	Т	Р	H		
2.5	0	0.5			3	0	0	3		
COI	IRSE C	UTCOME	DOMAIN	LEV	1					
	201	1	nd Understand the Current status of	Cognitive		erstand				
-	Nanotechnology applications on various fields Affective									
C	CO2	Relate ar	<i>d</i> Understand the properties of diferent	Cognitive	Appl Unde	erstand				
		nanomate	Affective	Rem Appl	ember y					
C	CO3 <i>Identify</i> the drawbacks of conventional Cognitive techniques/products used in selected fields Affective					erstand				
		Affective	Rem Appl	ember y						
C	CO4									
			to overcome the drawbacks of onal techniques	Affective	Rem Appl					
C	CO5Describe the Societal impact of nanotechnology.Cognitive Affective					Understand Remember				
UNI	тт	Nama in	Agriculture		Appl	у		15		
Micr Food The l	obiolog I Indust Food In	y, Nanotec ry, Nanotec dustry	Agriculture, Nanotechnology In Food I hnology For Controlled Release, Nanotec hnology And Risk Assessment, Regulator	hnology Rese	earch -	Agricu	lture	An		
UNI	TII	Nano in '	Textiles					15		
Nanc finisl asser	o particl ning :U	es, Metal C pgrade of ano layer	Aufacturing composite fibers :Carbon nano Dxide Nano particles, Carbon nano tubes, I chemical finishes and resultant function Energy and Environment	Nano cellular	foam st	ructur	es, Te	xtil		
			n and Sustainable Technology, Nanotechno	plogy for Sola	r Enero	v Coll	ection			
			orage and Novel Generation, Nanotech f	0.	U					
		•••	nologies, Green Chemistry and Materials,			-	-			
UNI		Nano in 1			,			15		
Nanc	ocardiol	ogy, Na	anopulmonology, Nanoneurology,	Nanosurgery,	Na	nooptl	nomol	ogy		
	onephro	logy, Nanol	nematology, Nanodentistry, Nanoradiology	- •		-				
		Nanomeo	hania					15		
Nanc UNI										
Nanc UNI Nanc heter	o-beams costructu	for mol	ecular detection, Carbon Nanotubes , ular motors ,Nanostructured Materials for		-			icto		

LECTURE	TUTORIAL	TOTAL
45	0	45

TEXT

- 1. Nanotechnology Applications by K.P.Mathula, Neha Publishers & Distributors, 2012
- 2. Nanoscience and Nanotechnology in Engineering, Dr. A.S. Pillai, Vijay K. Varadan, Dr LinFeng Chen, Mayank Dwivedi and Debashish Mukherji, Wiley ,2013.

REFERENCES

1. Encyclopedia of Nnaoscience and Nanotechnology by hari singh nalwa, American Scientific Bublisher ,2012

E REFERENCES

<u>www.nptel.ac.in</u>

1. Advanced Engineering Mathematics Prof. PratimaPanigrahi Department of Mathematics Indian Institute of Technology, Kharagpur.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	1					1	2				3	
CO 2	1					1	1				3	
CO 3	1					1	2				3	
CO 4	1					1	2				3	
CO 5	1					1	0				3	
	5					5	7				15	

TABLE 1: CO VS PO Mapping

1-5 = 1, 6-10 = 2, 11-15 = 3

0 - No relation, 1 - Low relation, 2-Medium relation, 3- High relation

	CODE	XMS405		L	Т	Р	С	
COURSE N	AME	Materials Science		3	1	0	4	
C:P:A		2.5:0:0.5		L	Т	Р	Н	
PREREQU	ISITE	Engineering Physics and Engineering Chen	nistry	3	1	0	4	
COURSE O	UTCOM	IES	Domain	Level				
CO1	Recall	and <i>distinguish</i> various crystal structures.	Cognitive Affective		erstan nember ly			
CO2	microstructure scales and their impact.				erstan nember ly			
CO3	Electronic Materials.			Rem App		r		
CO4	D4Describe the basics of mechanical properties of material and <i>identify</i> how they can be tested.Cogn Affect				erstan nember ly			
CO5	CO5Recognize and Describe various Magnetic MaterialsCognitive Affectiveand Nano Materials.Cognitive Affective				erstan nember ly			
	cture and i	ll Structure Inter-atomic bonding; Structure of crystalline						
Atomic struc systems, Bra	cture and i vais lattic on number			s, unit				
Atomic struct systems, Bra co- ordination UNIT – II Point defects	cture and i wais lattic on number Defect s; Disloca	nter-atomic bonding; Structure of crystalline es; Indexing of directions and planes, notation; packing factors.	ons, Inter-plana	s, unit r spaci	ings ar	nd ang	les,	
Atomic struct systems, Bra co- ordination UNIT – II Point defects	cture and i wais lattic on number Defect s; Disloca lts, twins,	Inter-atomic bonding; Structure of crystalline ees; Indexing of directions and planes, notation r, packing factors. s in Crystals tions, Types of dislocations, Burgers vector a	ons, Inter-plana	s, unit r spaci	ings ar	nd ang	les,	
Atomic struct systems, Braco- co- ordination UNIT – II Point defects stacking faul UNIT - III Ceramic Ma Properties, g ceramic –ma Properties of	ture and i vais lattic on number Defect s; Disloca lts, twins, Ceram aterials: In lasses; Co utrix comp of Materia	Inter-atomic bonding; Structure of crystalline ees; Indexing of directions and planes, notation r, packing factors. s in Crystals tions, Types of dislocations, Burgers vector a grain boundaries.	und its represent tures, processin on, concrete, mo nment. Electric onic Conductiv	s, unit r spaci 9 tation; g of co etal-m al& E ity, In	Plana Plana eramic atrix a Clectro trinsic	r defeo s; nd nic	les,	
Atomic struct systems, Braco- co- ordination UNIT – II Point defects stacking faul UNIT - III Ceramic Ma Properties, g ceramic –ma Properties of	ture and i vais lattic on number Defect s; Disloca lts, twins, Ceram aterials: In lasses; Co ttrix comp of Materia mi conduc	Inter-atomic bonding; Structure of crystalline ees; Indexing of directions and planes, notation packing factors. s in Crystals tions, Types of dislocations, Burgers vector a grain boundaries. http://opensite.com/posite/atterials/file/file/file/file/file/file/file/file	und its represent tures, processin on, concrete, mo nment. Electric onic Conductiv	s, unit r spaci 9 tation; g of co etal-m al& E ity, In	Plana Plana eramic atrix a Clectro trinsic	r defeo s; nd nic	les,	
Atomic struct systems, Braco- co- ordination UNIT – II Point defects stacking faul UNIT - III Ceramic Ma Properties, g ceramic –ma Properties , g ceramic Ser UNIT – IV Concepts of deformation, of materials.	ture and i vais lattic on number Defect s; Disloca lts, twins, Ceram aterials: In lasses; Co trix comp of Materia mi conduc Mecha stress and , Plastic d Magnetic n of magn	Inter-atomic bonding; Structure of crystalline ees; Indexing of directions and planes, notation packing factors. s in Crystals tions, Types of dislocations, Burgers vector a grain boundaries. ic, Electrical & Electronic Materials ntroduction, ceramic structures, silicate structor posite Materials- Introduction, classification oosites. Impact of ceramic materials in environ als: Electrical Conductivity, Electronic and I etivity,Semiconductor Devices Dielectric Pro- mical, Magnetic Properties of Materials I strain, Stress-Strain diagrams; Properties ob eformation. Impact Properties, Strain rate effe e Materials: Introduction, Magnetic fields or etic materials, soft magnetic materials, Hard	and its represent tures, processin on, concrete, mo nment. Electric onic Conductiv perties, Piezo-e tained from the ects and Impac quantities, type	 s, unit s, unit r spaci g g of control g of control	Plana Plana eramic atrix a Clectro trinsic city. ile test vior. F nagnet	r defee r defee and onic and ; Elast Hardne ism,	ic ss	
Atomic struct systems, Braco- co- ordination UNIT – II Point defects stacking faul UNIT - III Ceramic Ma Properties, g ceramic –ma Properties , g ceramic –ma Properties of Extrinsic Ser UNIT – IV Concepts of deformation, of materials. classification	ture and i vais lattic on number Defect s; Disloca lts, twins, Ceram aterials: In lasses; Co trix comp of Materia mi conduc Mecha stress and , Plastic d Magnetic n of magn gnetic ma	Inter-atomic bonding; Structure of crystalline ees; Indexing of directions and planes, notation packing factors. s in Crystals tions, Types of dislocations, Burgers vector a grain boundaries. ic, Electrical & Electronic Materials ntroduction, ceramic structures, silicate structor posite Materials- Introduction, classification oosites. Impact of ceramic materials in environ als: Electrical Conductivity, Electronic and I etivity,Semiconductor Devices Dielectric Pro- mical, Magnetic Properties of Materials I strain, Stress-Strain diagrams; Properties ob eformation. Impact Properties, Strain rate effe e Materials: Introduction, Magnetic fields or etic materials, soft magnetic materials, Hard	and its represent tures, processin on, concrete, mo nment. Electric onic Conductiv perties, Piezo-e tained from the ects and Impac quantities, type	 s, unit s, unit r spaci g g of control g of control	Plana Plana eramic atrix a Clectro trinsic city. ile test vior. F nagnet	r defee r defee and onic and ; Elast Hardne ism,	ic ss	

Silicon carbide nanoparticle, nano-magnetic, nano-electronic, and other important nanomaterials.Impact of Nano materials in environment

TOTAL HOURS : 45 Hours

TextBooks

1. Askeland D.R.,& P. P. Fullay (2007), The Science and Engineering of Materials – 7thCengage Learning Publishers.

2. William D. Callister, Jr (2008), Callister"s Materials Science and Engineering, (Adopted by R. Balasubramaniam) Wiley-Eastern

Reference books

1. A.S. Edelstein and R.C. Cammarata Ed.(1998), Nano Materials: Synthesis, Properties and Applications, Inst. Of Physics Publishing, UK.

2. Raghavan V (2007), Materials Science and Engineering - A First Course, Prentice Hall, India

3. James F. Shackelford (1996), Introduction to Materials Science for Engineers, Prentice Hall, India

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	1	1	0			1	2	0		1	1	
CO 2	0	0	0			1	0	0		1	1	
CO 3	1	1	0			1	2	1		1	1	
CO 4	1	1	0			1	2	1		1	1	
CO 5	1	1	3			1	2	1		1	1	
	4	4	3			5	8	3		5	5	

TABLE 1: CO VS PO Mapping

COURSECO	DE	XNT406	L	Т	Р	С		
COURSE NA	ME	NANOSYSTEMS AND THEIR DESIGN	3	1	1	5		
PREREQUIS	ITES	PHYSICS AND CHEMISTRY	L	Т	Р	Н		
C: P: A		3:1:1	3	2	2	7		
COURSE OU	TCOMES	5	DOMAIN		LEV	EL		
CO1						Remember Understand Set		
CO2 <i>Discuss</i> the Molecular dynamics and positional uncertainty <i>Study</i> the vibrational properties of nanoscale systems <i>Calculate</i> elastic constants based on classical				ive omotor	Remember Understand Perception			
CO3	potential CO3 <i>Explain</i> Transitions, Errors, Damage and Energy Dissipation. <i>Calculate</i> the phonon bandstructure and density of states				Remember Understand Perception			
CO4	<i>Describe</i> Mechanosynthesis and Nanoscale Structura Components. <i>Construct</i> a sensor by molecular positioning					ember erstand		
CO5 <i>Appraise</i> Mobile Interfaces and Moving Parts <i>Construct</i> and <i>evaluate</i> molecular gear and bearing				ive	Evalu	uate		

Overview, Molecular manufacturing, comparison, Approximation and classical continuum models, Scaling of classical mechanical systems, Scaling of electromagnetic systems, Scaling of classical thermal systems, Beyond classical continuum models ,PES: Overview Quantum theory and approximations, Molecular Mechanics, Potentials for chemical reactions, Continuum representations of surfaces

Unit II- Molecular Dynamics And Positional Uncertainty

9+3+3

Overview, Nonstatistical mechanics, Statistical mechanics, PES revisited: accuracy requirements, Conclusions, PU: Overview, Positional uncertainty in engineering, Thermally excited harmonic oscillators, Elastic extension of thermally excited rods, Elastic bending of thermally excited rods, Piston displacement in a gas-filled cylinder, Longitudinal variance from transverse deformation, Elasticity, entropy, and vibrational modes, Conclusions

Unit Iii- Transitions	, Errors, Damage	e And Energy Dis	ssipation	9+3+3
Photochemical damaged and the second	ge, Radiation dam	age, Component a conons and phone	and system lifetimes, C	ermo mechanical damage conclusions LED: Overview lastic damping and phonor ells, Conclusions
Unit Iv- Mechanosy	nthesis And Nano	oscale Structural	Components	9+3+3
diamondoid structure	Reactive species s, Conclusions , I ts, Surface effect	, Forcible mec NSC: Overview, s on component	hanochemical process Components in contex properties, Shape con	ion-phase synthesis and ses, Mechanosynthesis of t, Materials and models for atrol in irregular structures
Unit V- Mobile Inter	rfaces And Movin	ng Parts		9+3+3
Gears, rollers, belts,	and cams, Barrie	ers in extended s		ings, Atomic-axle bearings ents, clutches, and ratchets visited, Conclusions CO
1 Molecular buil	der			1
2 Molecular dyna	amics: Basics			1
3 Green's function	on surface calculat	ions		2
4 Elastic constan	ts based on classic	cal potential		2
5 Molecule-surfa	ce systems: Benze	ene on Au(111)		3
6 Phonons, Band	structure and The	ermo electrics		3
7 Thermoelectric	effects in a CNT	with isotope dopi	ng	3
8 Oxide dot on si	licon surface			4
9 Spin transport	in magnetic tunnel	junctions		5
10 Spin-orbit trans	sport calculations:	Bi2Se3 topologic	cal insulator thin-film d	evice 5
11 Spin Transfer	Forque			5
12 Atomic-axle be	earings, Gears	1		5
	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	45	30	30	105
TEXT BOOKS				
1. Eric Drexler F India, 2010.	K, Nanosystems: N	Aolecular Machi	nery, Manufacturing, a	and Computation, Wiley
REFERENCES				

1. Ben Rogers, Jesse Adams, Sumita Pennathur, **Nanotechnology: Understanding Small Systems**, Third Edition, CRC Press, 2014

2. H. S. Nalwa, Ed., **Encyclopedia of Nanoscience and Nanotechnology**, 10-Volume **Set**, American Scientific Publishers, Los Angeles, 2004.

3. DeMicheli G., Leblebici Y., Gijs M., Vörös J., Nanosystems Design and Technology, Springer, 2009

E-REFERENCES

- 1. http://www.imm.org/research/parts/molvis/#MIMEtypes
- 2. http://ipn2.epfl.ch/lns/lectures/nanoscience/lecturenotes/cour-1.pdf
- 3. www.uniroma2.it/didattica/NANOSCIENZE/deposito/L1.ppt
- http://www.nanoscienceworks.org/publications/books/4/9781420048056/instructors/ITNSLecture-1.pdf
- 5. http://uw.physics.wisc.edu/~himpsel/Nano/lectures.htm

CO/PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
1	1	1		0	1	1	0		0	1	0	0	2	0
2	2	1		0	2	2	0	1	0	1	0	0	2	0
3	1	2	1	0	2	2	0		0	1	0	0	2	0
4	1	1	1	0	2	2	0	1	0	1	0	0	2	0
5	1	1	1	0	2	2	0	1	0	2	0	0	2	0
Total	6	6	3	0	9	9	0	3	0	6	0	0	10	0
Scaled	2	2	1	0	3	3	0	1	0	2	0	0	2	0

Table 1: Mapping of COs with POs

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE	CODE	XGS 407				L	Т	Р	SS	С	
COURSE N	NAME	TECHNIC	AL COMMUNICATIO	ON		1	0	0	2	1	
						L	Т	Р	SS	Н	
C:P:A		1.8:0.8:0.4				1	0	0	2	3	
	OUTCOME				DOMA		Ū.	-	LEVEL		
CO 1	1		a technical project report	rt and	2011						
	••	ge on the ling	guistic competence to w		Co	gniti	ve	R	lemem	ber	
CO 2	-	both technic rite a project.	al subject skill and lang	guage	Co	gnitiv	ve		Creat	e	
CO 3	Confidenc	ce to <i>present</i>	a project in 10 to 15 min	utes	Af	fectiv	/e	J	Respor	ise	
CO 4	of sounds	in English	and absorbs the pronunc Language and learns he rd and in a sentence prop	ow to	Co	gnitiv	ve	R	lemem	ber	
CO 5		e and it train	eaks clearly and fluently s the learner to listen ac		Psyc	homo	otor	P	ercept	ion	
SYLLABU	S							HC	URS		
UNIT I	BASIC P	RINCIPLES	OF GOOD TECHNIC	CAL W	RITIN	G			9		
Style in tec	hnical writi	ng, out lines	and abstracts, language	used i	n techni	cal w	riting:	techi	nical w	ords,	
jargons etc	1										
UNIT II		L TECHNIQ			~				9		
Definition,	-	n of mecha	nism, Description of	a pro	cess, C	lassif	ication	ns, di	vision	and	
interpretatio		Y PROJECT	1						9		
			lusion, bibliography, a	nnevur	e and o	lossa	rv Gr	anhice		etc -	
) - 15 minutes	intextury		10554	ly, OI	apme	5 alus	cie	
UNIT IV			SH LANGUAGE						9		
Vowels, con	nsonants - V	ocabulary bu	ilding – synonyms and a	antonyı	ms, word	l root	s, one	-word	substi	tutes,	
prefixes and	l suffixes, ic	lioms and ph	rases.	-							
UNIT V	READIN	G COMPRI	CHENSION						9		
			context, scanning, skin	nming,	inferrin	g me	aning,	criti	cal rea	ding,	
active listen		ig for compre									
	-	TURE	SELF STUDY	PR	ACTIC	AL		T(DTAL		
HOURS		15	30		0				45		
TEXT BO				1 7 7 1	D						
			ing – April, 1978, Oxfor			• ,	1.5				
			cal Communication: A C	juide fo	or scient	ists a	nd Eng	gineer	s. Autł	ıor,	
		University p	ess. 2007								
REFEREN		mh Effortive	Internersonal and Test	Comm	unioatio	n Cl-	lle for	Enci	100rc		
	ntic Publish		e Interpersonal and Task	COIIIII	iumcatio	III SKI	IIS IOF	Eligh	icers,		
Alla		. 2010									

TABLE 1: CO VS PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO 1	0	0	0	0	0	1	3	0	0	0	0	0
CO 2	0	0	0	0	0	1	1	0	0	0	0	0
CO 3	0	0	0	0	0	1	2	0	0	0	0	0
CO 4	0	0	0	0	0	1	1	0	0	0	0	0
CO 5	0	0	0	0	0	1	1	0	0	0	0	0
	0	0	0	0	0	5	8	0	0	0	0	0

1-5 = 1, 6-10 = 2, 11-15 = 3

0-No relation, 1-Low relation, 2-Medium relation, 3- High relation

SYLLABUS

SEMESTER - V

COURSE	CODE	XNT501		L	Т	Р	C
COURSE	NAME	QUANTUM MECHANICS		3	1	0	4
		FOR ENGINEERS					
PREREQU	JISITES	XAP104 - Applied Physics,		L	Т	Р	Η
		XMA 101 Partial differentiation					
		and their applications					
C:P:A		2:1:0		3	2	0	5
COURSE	OUTCOM	ES	IN	Ι	LEVE	L	
CO1	demonstra	<i>ad</i> the basic ideas of QM through the tions of quantum system and formulation prize problem	Cognitive		Und Ana	erstan lyze	d
CO2		he basis for description of elements & <i>ply</i> in Hydrogen atom and <i>discuss</i> eigen	Cognitive Psychomotor	•	Und App	erstan ly	d,
CO3		and <i>discuss</i> eigen functions Cognitive Psychomotor					d end.
CO4	- /	the basis for description to heavier & their bonds	•	Understand, Analyze			
CO5		and Discuss time evolution and the ent with advanced concept of angular n	Cognitive Psychomotor		Und Ana	erstan lyze	d,
UNIT I	BASIC II	DEAS OF QM				9+6	=12
Confined I	nside a Pip Three-dimen	sites,Basic Ideas of Quantum Mechanics, e: The physical system, The Hamiltonia sional solution, Quantum confinement, The PARTICLE SYSTEMS	in eigenvalue	problei	m and		tions
The Hydro together, St	gen Molecu tates that sha state, Comp	The Hydrogen Atom, Expectation Value a lar Ion: The Hamiltonian: Energy when f are the electron, Comparative energies of th arison with the exact ground state. LE-PARTICLE SYSTEMS	fully dissociate	ed, Ene	rgy w	hen c	loser on of
Generaliza Spin: Wave multiple pa	tion to Mu e function for tricles with trize the Way	Itiple Particles, The Hydrogen Molecule, or a single particle with spin, Inner produ spin, the hydrogen molecule, Triplet and s e Function, Matrix Formulation, Global S LE-PARTICLE SYSTEMS – HEAVI	cts including s inglet states, I ymmetrization	spin, W dentical 1 [Backg	ave fu Partioground	Inclu Inction cles, V	iding n for Vays
		Hamiltonian eigenvalue problem, Appro and helium Lithium to neon, Chemica					

	e problem, Solution by separation of victure, Quantum Statistical Mechanics.	variables, The density o	of states and
	VOLUTION		9+6=12
The Schr odinger Equa	tion, The Position and Linear Momentum	Eigenfunctions, Wave Pa	ckets in Free
Space: Solution of th	ne Schrödinger equation, The fundamer	ital commutation relation	ons, Ladders,
	lar momentum, Triplet and singlet states, C		· 1
-	stic Dirac Equation, The Electromagnetic	Field, The Hamiltonian	n, Maxwell's
equations, Electrons in	magnetic fields.		
TOTAL HOURS			
LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	30	0	75
TEXT BOOK			
1. Leon von Domm	elen, "Fundamental Quantum Mechanics for	or Engineers", Version 3.1	I, beta 3,
2007.			
REFERENCES			
1. David J. Griffith	hs, Introduction to Quantum Mechanics (Ca	mbridge University Press	s India; 2/ed
edition, 2016).			
	tum Mechanics (Tata McGraw Hill, New D		
3. V. K. Thankapp	oan, Quantum Mechanics (Wiley-Eastern, N	lew Delhi, 1985).	
4. P. M. Mathews	and K. Venkatesan, A Text Book of Quant	um Mechanics (Tata McC	braw Hill,
New Delhi, 198	7).		
E-REFERENCE			
1. <u>http://nptel.ac.ir</u>	n/courses/115106066/		
2. http://freevideol	lectures.com/Course/2669/Quantum-Physic	S	

Table 1 : COs versus POs mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7/PO8/PO9	PO10	PO11/PO12	PSO1	PSO2	Total	Scaled
CO1	3	2				1		2				8	2
CO2	2	2				2		2				8	2
CO3	1	2		1	2	2		1		1		10	2
CO4	1	1		1	2	2		1		1		9	2
CO5	2	1				1		1		1		6	1
Total	9	8		2	4	8		7		3		41	9
	2	2			1	2		1		1		9	1

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE C	CODE 2	XNI	502			L	Т	Р	С	
COURSE N		NAN I	NOMATERIALS FABR	ICATION 7	FECHNIQUE	5 3	0	1	4	
C:P:A	-	1.5:1	.5:1			L	Т	Р	Η	
PREREQUI	ISITE					3	0	2	5	
COURSE O	UTCOM	ES			DOMAIN	LEV	/EL			
CO1	Describe nanomate		Demonstrate the Fabrica	ation	Cognitive Psychomotor Affective	Und App	erstan ly	ıd		
CO2			basics of Theorem of elec <i>dentify</i> how they can be te		Cognitive Psychomotor Affective		erstar hanis ly			
CO3	Describethe Physical techniques and RecognizeCognitivethe different types of processingPsychomotoAffective						erstar nembe ly			
CO4	and how	Identify the different types of chemical methods and how they can be tested. Describe the basics of Chemical methods for fabricationCognitive Psychomotor Affective					erstan embe hanis ly	r		
CO5			<i>basic Self Assembly and</i> a the different types of pr		Cognitive Psychomotor Affective	Und Ren	erstan nembe hanis	r		
UNIT - I	Basic Co	once	pts of Nano Fabrication				5	9+6	5=15	
of nano-stru particle trans	ctured ma sport in lov	ateria w der	•					on; n	ano-	
UNIT – II	Physical	l Tec	hniques I					9+0	6=15	
			onductor nano structures. ition; thermal evaporation		-		nethoc	ls;		
UNIT - III	Physica	al Te	chniques II					9+0	5=15	
	·	• •	llsed laser deposition; sput plasma processes; physica	-	• 1	-	0,		sses;	
UNIT – IV	Chemic	cal N	Iethods I				9.			
			(CVD); plasma-enhanced hanced CVD; electron enh		· •	CVD; r	netal-	organi	ic	
UNIT – V	Chemica	al M	ethods II					9+0	6=15	
(MBE); cher	nical beam		spheric pressure CVD; retaxy (CBE); chemical bath		- · · ·	molecula	ar-bea	m epi	itaxy	
TOTAL HC			Tutorial	Pro	actical		Tote	al		
Lecture 45						Total				
2	IJ		0		30		75			

TE	ХТВООК
2.	"Introduction to Nanotechnology," Frank J. Owens & Charles P. Poole, Wiley-IEEE, 2003. "Encyclopedia of Nanoscience & Nanotechnology," H. S. Nalwa, American Scientific Publishers, 2004.
3'	"The Powder Method," L.V. Azaroff & M. J. Buerger, McGraw-Hill, 1958.
RE	FERENCE
1.	"Encyclopedia of Nanoscience & Nanotechnology," H. S. Nalwa, American Scientific Publishers, 2004.
2.	"X-ray Diffraction Procedures," H. P. Klung & L. E. Alexander

CO/PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PSO1
CO1	1	2	3	1	2	1	1	1	2
CO2	1	2	3	1	2	1	1	1	2
CO3	1	2	3	1	2	1	1	1	2
CO4	1	2	3	1	2	1	1	1	2
CO5	1	2	3	1	2	1	1	1	2
Total	5	10	15	5	10	5	5	5	10
	1	2	3	1	2	1	1	1	2

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE O	CODE	XNT504	L	Т	Р	С	
COURSE N	IAME	NANOMATERIALS CHARACTERIZATION	3	0	1	4	
		TECHNIQUES – I					
PREREQU	ISITES	PHYSICS AND MATERIALS	L	Т	Р	Н	
-		SCIENCES					
C:P:A		2:0.5:0.5	3	0	2	5	
COURSE (DUTCOM	ES	DOMA	AIN	LEV	EL	
CO1	Demonst	trate the understand the Metrology	Cognit	ive	Unde	rstanding	
	concepts	relevant to the nanomaterials	Psycho	motor	Apply	ving	
CO2	Identify	and Understand and Realize the Standards	Cognit			rstanding,	
	of nanon	netrology and its calibration techniques			Identi	fying	
			Psycho	motor	Guide	ed	
					Respo		
CO3		and and Apply the principles of Optical	Cognit			rstanding,	
		lits applications to characterize the	Psycho	motor	Apply	ving	
<u> </u>		erials and nanostructures			Lu densten din e		
CO4	••	and <i>Evaluate</i> the different spectroscopic	Cognit		Understanding, Applying		
	charecter	es and its application for nanomaterials	Psycho	motor	Apply	ing	
CO5		and and Apply the principles and	Cognit	ivo	Unda	rstand,	
005		ons of surface charectization techniques for	Psycho		Guide	,	
	nanomat		1 Sycho	motor	Respo		
UNIT I	Metrolo					0+6=15	
linear meas Secondary,	Metrology urements (Tertiary S	y- Accuracy, precision and reliability; Stand (Line Standard & Wavelength Standard); Standards, Working standards); Calibration Random Errors); Statistical analysis of errors,	Subdivis - Types	ion of s of Err	tandards ors (Sta	(Primary,	
		ion Standards for Nanometrology			9	0+6=15	
		for Nanometrology: Flatness standards; Later		,		standards;	
		rds; Film thickness standards; Accuracy of op	otical into	erferome			
UNIT III	-	Characterization Techniques			I	0+6=15	
-	• • •	resonance; Photoluminescence (PL); micro-	-		` •		
		hoto-conductance decay and photoluminesc	ence de	cay; Qua	rtz Cry	stal Micro-	
balance (QC							
UNIT IV	*	scopic Techniques	1 / T-Y			0+6=15	
	-	py; Infrared (IR) & Fourier Transform infr	,	· •	-	•	
-		(NMR) spectroscopy; Dynamic nuclear mag	-			IIIC INIVIK);	
*		echniques; micro-Raman and Laser Raman; S		ragneton) - 6_15	
UNIT V		Characterization Techniques				0+6=15	
		eir applications of Scanning Probe Technique neling Microscope (STM), Electric Force M					
(AI'WI), SCa	inning Tull	neming wheroscope (STWI), Elecule Porce M		y (EFM), iviagi	ieuc roice	

Microscopy (MFM); ECAFM, ECSTM, Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscopy (FE-SEM); Reflection High Energy Electron Diffraction (RHEED); Low Energy Electron Diffraction (LEED); gas adsorption spectroscopy for porosity measurement.

TOTAL HOURS				
	LECTURE	TUTORIAL	PRACTICAL	TOTAL
HOURS	45	0	30	75
TEXT BOOK				
1. Skoog, Holler, I	Nieman " Princip	les of Instrumental Analysis	"	
2. Rainer Waser "	Nanoscale Calibr	atin Standards"Wiley-VCH		
3. Rainer Waser "	Nanometrology"	Wiley-VCH		
REFERENCES				
1. Sabu Thomas Raj	u Thomas Ajesh	Zachariah Raghvendra Mish	ra, "Microscopy Me	ethods in
Nanomaterials Ch	naracterization"	Volume 1,2017, Elsevier		
2. Ratna Tantra "Na	nomaterial Chare	cterization: An Introduction	s" Wiley-VCH	
3. R. K. Jai "Engine	ering Metrology,	'n, Khanna Publishers, Delł	ni, 2003.	
4. Ted Busch "Fund	amentals of Dime	ensional Metrology "Delma	r Publishers Inc., US	SA, 1989.
E-REFERENCE				
www.nptel.ac.in				
www.mit.co.in				

Table 1	: COs versu	s POs mapping
---------	-------------	---------------

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1		1	2	3	1	2	1	1	1			2	
CO2		1	2	3	1	2	1	1	1			2	
CO3		1	2	3	1	2	1	1	1			2	
CO4		1	2	3	1	2	1	1	1			2	
CO5		1	2	3	1	2	1	1	1			2	
Total		5	10	15	5	10	5	5	5			10	
		1	2	3	1	2	1	1	1			2	

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE CO	ODE	XNT505		L	Т	Р	С
COURSE NA		ENGINEERING THERMODYNA	MICS	3	1	0	4
PREREQUI	SITES	PHYSICS AND CALCULUS		L	Т	Р	Н
C:P:A		2.75:0:0.25		3	2	0	5
COURSE O	UTCOMES	S (COs)	Domain	Lev	rel		
CO1	To Recall	the basic laws of thermodynamics and	Cognitive	Ren	nembe	r	
	Apply ther			App	oly		
CO2		arize the concepts in statistical	Cognitive	Unc	lerstan	ding	
	thermodyn						
CO3		uct models of statistical	Cognitive	App	olying		
~ ~	thermodyn		~				
CO4	•	e and Use thermodynamic principles	Cognitive		lyzing		
		al and metallurgical processes.	Affective		eiving		
CO5		arize phase transitions.	Cognitive	Unc	lerstan	-	
UNIT-I		ONCEPTS AND LAWS OF THERM nermodynamics systems – Boundar				9+6	
Concept of er UNIT –II Statistical the probability –	ntropy – Pri FUNDAM rmodynami B.E, F.D ar	ators and heat pumps – Carnot cycle- nciple of increase of entropy – Basic the IENTALS OF STATISTICAL THE ics- energy states and energy level – m and M B statistics – entropy - B.E, F.D distribution function – partition function	hermodynamic rel RMODYNAMIC icro and macro sta and classical dist	ations. Sate – th ributio	ermod n func	9+6 lynami tion ar	= 15 .c
UNIT-III		ICAL THERMODYNAMICS MOD		unite pi	operu	<u>9+6</u>	=15
expansions-B Simulations polarisation n	rownian dy in different nodels.	Ensembles- Classical statistical the mamics- Lagrangian and Hamiltonian ensembles-Force fields for molecu	functions-Extended les, liquids and standard	ed Lag solids-	rangia Many	n meth -body	ods- and
UNIT-IVSOLUTION THERMODYNAMICS AND ELECTROMETALLURGY9+6=1							
Chemical app diagram for	broach to so binary all	utions, Partial and integral molar que blutions, Sievert's law, Chemical pote oy systems, Phase diagrams, Clape s, Relationship between cell EMF and	ential, Fugacity an eyron equation. I	d Acti Electro	vity, F metall	ree en	ergy
UNIT-V		QUILIBRIA AND PHASE TRANS				9+6	
metastable ph Thermodynar spinodal, mar	ase diagran	component systems, Phase equilibria, ns, calculation of phase diagrams. se transformations: Melting and solidi order disorder transformations. First a	fication, precipitated and second order t	tion, eu ransitio	itectoi		
LECTURE				OTAI			
45		30 0	7	5			
TEXT BOO	KS:						

- 1. P.K.Nag, "Basic and Applied Engineering Thermodynamics". Tata McGraw Hill, New Delhi, 2012.
- 2. Herbert Goldstein "Classical Mechanics" II edition, Narosa Publishing House. **REFERENCES:**

1. Rogers and Mayhew, "Engineering Thermodynamics – Work and Heat Transfer", Addision Wesley, New Delhi, 1999.

- 2. Eastop and McConkey, "Applied Thermodynamics", Addision Wesley, New Delhi, 1999.
- 3. K.C. Gupta, "Classical Mechanics" New Age Publishers.
- 4. B.K.Sankar, "Thermal Engineering", Tata McGraw Hill, New Delhi, 1998.

E-REFERENCES:

www.nptel.ac.in

www.mit.edu

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	
CO1	3	3	0	1	0	1	2	0	2	0	0	1	1	0	14
CO2	3	3	2	1	0	1	2	0	2	0	0	1	1	0	16
CO3	3	3	1	1	0	1	2	0	2	0	0	1	1	0	15
CO4	3	3	0	1	0	1	2	0	2	0	0	1	1	0	14
CO5	3	3	2	1	0	1	2	0	2	0	0	1	1	0	16

Table 1 : COs versus POs mapping

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE CODE	XNT506A	L	Т	Р	С			
COURSE NAME	EMERGING TOOLS FOR BIOLOGY AND MEDICINE:	2	0	1	3			
PREREQUISITE	BIOLOGY FOR ENGINEERS	L	Т	Р	Н			
C:P:A	1.5:0.5:1	2	2 0 2 4					
	COURSE OUTCOME	DOMAIN		LEV	/EL			
C01	<i>Explain</i> and <i>Discuss</i> the nanoscale paradigm in terms of properties at the nanoscale dimension	Cogni Affec			erstanding eiving			
CO2	<i>Identify</i> and <i>Build</i> the current nanotechnology solutions for selected biological issue	Cogni Psych	itive omotor		erstanding ipulation			
CO3	<i>Read</i> and <i>Present</i> current nanotechnology literature applied to a particular problem domain	Cogni Affec	tive	App Resp	eiving lying ponding			
CO4	<i>Apply</i> key concepts in materials science, chemistry, physics, biology and engineering to the field of nanotechnology	0	Cognitive Rememberi Affective Internalizin Value		malizing			
CO5	<i>Identify</i> career paths and <i>Acquire</i> knowledge on advanced biomedical stream	Cogni Affec		Understanding and applying				
UNIT I Nanote	echnology in Biology and Medicine: The New Fi	ontier			6+6			
-bio-Inspired Nanon Polymersomes: Towa Biomaterials: Mussel UNIT II Nucleo	r Nanomachines and the Building Blocks of Life- naterials for a New Generation of Medicin ard a Synthetic Cell - Peptoids - Peptide Nuc- Adhesive Proteins protein-Based Nanodevices in Drug Design and or Molecular Targeting – Assembly of Three	e: Lip eleic A	oosomes cid, Fund	- V	irosomes - lly Inspired 6+6			
Molecular Model, Ol	igodeoxynucleotide Preparation: Cloning- Expre Device Assembly - Applications of Ordered	ssion-	and Purif	ficatio	n of Fusion			
UNIT III Quant	um Dots				6+6			
Specificity, and Toxi	per ties-Synthesis - Solubilization, and Biococity, Applications in Biology and Medicine : Celevalar Mapping - Tumor Targeting and Imaging ngle Virus Detection.	llular I	maging a	nd Tra	acking - Ly			
UNIT IV Single-	Molecule Detection Techniques for Monitoring y at the Nanoscale Level	g Cellu	lar		6+6			
Ratio - Ensure That th Optical Techniques f Optical Microscopy-S Applications in Fixe	for Single-Molecule Detection :Signal-to-Noise ne Signal Actually Originates from a Single Molecule for Single-Molecule Detection: Laser-Induced Fl Surface-Enhanced RamanSpectroscopy - Optical d and Living Cells - Molecular Motors- Cell Signels Monitoring Reactions and Chemical Consti	cule uoresce Tweeze gnaling	ence- Nea ers – Protei	ar-Fiel n Con	d Scanning			

UNIT-		otube-Based Membrane				6+6
		hods of Nanotube- Based				
-		anotube Membranes - Se	-	•	0	-
Ions -	-	Using Molecular Reco	0			
Sensors		nd-Gated Membranes		d Conical	Nanotube M	Iembranes –
Electron	mechanicall	y Gated Conical Nanotube		1	1	
		LECTURE	TUTORIAL	LAB	ΤΟΤΑΙ	
		30	0	30	60	
TEXT						
1.	Nanotechno	logy In Biology And Med	licine, Methods,	Devices, and	Applications,	by Tuan Vo-
	Dinh					
REFE	RENCES					
1.	"Handbook	of Nanostructured Materi	als & Nanotechno	ology," Hari S	Singh Nalwa (1	Ed.),
	Academic P	Press, 2000.				
		ology: Basic Science & E	ngineering Techn	ologies," Mic	hael Wilson, C	CRC Press,
	London, 20					
	•	very: Engineering Principl	es for Drug Thera	aphy," M. Sal	zman, Oxford	University
	Press, 2001.					
		very & Targeting," A.M. H				
		of Nano and Molecular E				
		ology: Information Techn				
		Micro and Nanotechnolo	gy," Tejal Desai d	& Sangeeta Bh	natia, Springer.	
	ERENCES					
	www.nptel.					
	www.mit.ed					
S.No	Lab Expe			Domain	Level	СО
1.		zation of Polymerosomes		Affective	Applying	1
2.	•	Farication on Silicon Sur	face – Video	Affective	Applying	2
	Lecture					
3.		inctionalization of quantu		Affective	Applying	3
4.		detection using Raman S	pectroscopy	Affective	Applying	4
5.	Biocompa					

Table:1 Mapping of CO's with PO:

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO2	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO3	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO4	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO5	1	1	0	0	2	1	1	0	0	1	0	0	1	1
Total	5	5	0	0	10	5	5	0	0	5	0	0	5	5
	1 (10		1	•										

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE	CODE	XNT506B		L	Т	Р	C	
COURSE	NAME	ENZYME TECHNOLOGY		2	0	1	3	
PREREQU	U ISITES	CHEMISTRY		L T P				
C:P:A		3:1:1		2	0	2	4	
COURSE	Leve	el						
CO1	To Classij	fy and <i>Describe</i> enzymes.	Cognitive	Und	erstan	ding		
	Detection	of enzyme activity.	Affective	Rece	eiving			
			Psychomotor	Perc	eptior	ı		
CO2	To Summ	arize and Measure the parameters of	Cognitive	Understanding				
	enzyme ki	inetics.	Psychomotor	Mec	hanisi	n		
CO3	To Identif	fy and <i>Discuss</i> enzyme extraction	Cognitive	App	lying			
	procedure	s.	Affective	Resp	ondir	ng		
			Psychomotor	Perception				
CO4	To Classi	fy and <i>Describe</i> enzyme	Cognitive	Understanding				
	immobiliz	ation.	Affective	Rece	Receiving			
			Psychomotor	Perc	Perception			
CO5	To Explai	<i>n</i> and <i>select</i> biosensors according to	Cognitive	Und	erstan	ding		
	various ap	plications.	Resp	Responding				
Psychomotor Perce								
UNIT-I	INTROD	UCTION TO ENZYMES				6+6	j	
Classificati enzyme sub	on of enzym ostrate compl	nes - Mechanisms of enzyme action, ex formation - Specificity of enzyme a heory - Role of entropy in catalysis - '	action - Principles	of cata	lysis	nergeti - Colli	c si	

induced enzymes, intracellular and extracellular enzymes - Application of enzymes in food, pharmaceutical and other industries - Enzymes for analytical and diagnostic applications.

UNIT –II

KINETICS OF ENZYME ACTION

6 + 6

Kinetics of single substrate reactions - Estimation of Michaelis -Menten parameters, Turnover number, Multi-substrate reactions, Mechanisms and kinetics - Types of inhibition, Kinetic models, Substrate and product inhibition - Allosteric regulation of enzymes, The Monod-Changeux-Wyman model and the Koshland-Nemethy-Filmer model - pH and temperature effect on enzyme and deactivation kinetics.

UNIT-III PURIFICATION AND CHARACTERIZATION OF ENZYMES FROM 6 + 6NATURAL SOURCES

Methods of production of enzymes, Extraction of enzymes from various sources like plant, animal and microbial sources, soluble enzymes, and membrane bound enzymes - Nature of extraction medium -Purification of enzyme - Criteria of purity - Determination of molecular weight of enzymes.

UNIT-IV ENZYME IMMOBILIZATION 6+6

Physical and chemical techniques for enzyme immobilization - adsorption, matrix entrapment, encapsulation, cross-linking, covalent binding with example - Advantages and disadvantages of different immobilization techniques - Overview of applications of immobilized enzyme systems.

UNIT-V	BIOSENSO	RS				6 + 6				
		, History - Types and de	esign o	f enzyme electrodes	, Biosensors ap	plications				
	try, healthcare and	environment.								
PRACT	TICALS:									
S.NO		NAME OF TH	E EXI	PERIMENT		CO				
1	Enzyme denatura	tion and renaturation.				1				
2		specific activity of enzyr	ne.			1				
3		Enzyme kinetics of phosphatase.								
4	Effect of pH, tem	perature and substrate co	ncentr	ation on enzyme act	vity.	2				
5	Determination of	stability of enzyme activ	ity.		-	2				
6	Production of mi	crobial enzymes.	•			3				
7	Downstream proc	cessing (Purification) of e	enzyme	es		3				
8	Comparison of er	nzyme activity on immob	ilized a	and free enzyme.		4				
9	Immobilization o	f yeast cells as biocatalys	t for et	thanol production fro	om sugar.	4				
10	Biosensors for detection of glucose. 5									
LECTU	J RE	TUTORIAL		PRACTICAL	TOTAL	·				
30		0		30	60					
TEXT I	BOOKS:									
1. Chap	lin, M. and Bucke	e, C. (1990). Enzyme Te	chnolo	ogy, 1st Edition, Ca	mbridge Univers	sity Press				
London,	, 1st Edition, 1990.									
2. Palme	er, T., Enzymes: B	iochemistry Biotechnolo	gy and	Clinical Chemistry	, East West Pres	s Pvt Ltd				
New De	lhi, 5th Edition, 20	01.								
REFER	ENCES:									
1. James	s Lee, M. (1992). I	Biochemical Engineering	, 1st E	dition, Prentice-Hall	Inc Publishers,	Delhi, 1s				
Edition,	1992.									
2. Blanc	h, H. W. and Clark	, D.S., Biochemical Engi	ineerin	g, CRC Press, USA,	2nd Edition, 19	97.				
3. Zubay	y, G., Biochemistry	v, 4th Edition, McGraw H	lill Puł	olishers, New Delhi,	1999.					
	ERENCES:									
1	otel.ac.in									
-	ww1.lsbu.ac.uk/wa	ter/enztech/								
www.vl	<u>ab.co.in</u>									

Т

Г

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	0	0	1	2	2	2	0	0	1	1	0	1	0
CO2	1	1	0	1	2	1	1	1	0	1	1	0	2	0
CO3	0	0	1	1	1	1	1	1	0	1	1	0	1	0
CO4	1	1	2	1	2	1	2	1	0	1	1	0	2	0
CO5	1	1	2	1	1	1	2	1	0	1	1	0	2	0
Total	4	3	5	5	8	8	8	4	0	5	5	0	8	0
Scale	1	1	1	1	2	2	2	1	0	1	1	0	2	0

Table:1 Mapping of CO's with PO:

1-5 = 1, 6-10 = 2, 11-15 = 3

0-No relation, 1-Low relation, 2-Medium relation, 3- High relation

COURSE C	CODE	XNT506C		L	Τ	P	С		
COURSE N	IAME	ELECTRIC AND ELECTRON	IC CIRCUITS	2	0	1	3		
C:P:A		1.5:1.5:1		L	Т	Р	Н		
PREREQU	ISITE	BASIC ENGINEERING		2	0	2	4		
COURSE (DUTCOMES	- ·	DOMAIN	LEV	EL				
C01		e basics of Theorem of electric	Cognitive	Understand					
		<i>idenify</i> how they can be tested.	Psycomotor	Rem	embei	•			
			Affective	Mec	nanisr	n set			
				Appl					
CO2	Classify and	d <i>explain</i> AC and DC Machines and	Cognitive		erstan	d			
		put output characteristics of	Psycomotor	Rem	embei	•			
	Machines		Affective	Mec	nanisr	n set			
			Appl	y					
CO3	Recognize a	and <i>Describe</i> various Power plants	Cognitive	Unde	erstan	d			
	-	rotection switch gears	Affective	Rem	embei	•			
		Ç		Appl	y				
CO4	Describe the	Cognitive	Unde	erstan	d				
	<i>identify</i> hov	v they can be tested.	Psycomotor	Rem	embei	•			
		-	Affective	Mechanism set					
				Apply					
CO5	Describe the	e basic of digital electronics and	Cognitive	Understand					
		to electronics devices.	Psycomotor	Rem	ember	•			
			Affective	Mec	Mechanism set				
				Appl	у				
UNIT I	Fundament	tals of Electric Circuits			6	+6			
		Circuits, Single Phase A.C. Circuits: I	R.M.S. and Averag	ge values	and f	form f	facto		
Network To	pology, Netwo	ork Theorems (With A.C. & D.C)							
UNIT II	Electrical n	nachines and drives			6+	-6			
Basic princi	nle Operation	and construction AC machine and DC	Machine Speed	Control	AC n	nachir	ne ar		
		ics of AC machine and DC Machine							
drives									
UNIT III	Eco Power	Generation and Utilization:			6+6	5			
Power plant		ower plants- Schematic arrangement	advantages and	disadva	ntage	s of 1	now		
		ear-Relay, circuit breakers-Introduction							
		ower Generation		ii uiiu D			1 41 1		
UNIT IV		Devices and Circuits;			6+0	<u>і</u>			
		aracteristics of Power diode, Zener di	iodo Transistor (onstruct			rotic		
		and Current control device		onstruct	ion an	u ope	auc		
<u>Ji vo</u> nage (tronics and Opto Electronic Devices	5		6+6	5			
UNIT V	0,								
UNIT V Binary Syste	ame and Logi	c Circuits: Boolean Algebra and Mar	ming Methods, L	onic Fun	ction	Roali	zatic		
Binary Syste	-	c Circuits: Boolean Algebra and Mag		-					
Binary Syste with MSI Ci	rcuits: Flip Fl	c Circuits: Boolean Algebra and Map ops, Counters and Registers: Logic Fa solid state physics, Display device	amilies: Programm	able Log	gic De	evices	:		

LAB EXPERIMENTS

Electrical :

1.Load characteristics of DC Machines.

2. Speed control of Dc Machines.

3.Load test on single phase Transformer

4. Study on Protection and switchgear devices.

5.Study on Renewable power plants(Bio Methanization ,Solar plant and wind mill)

6.Study and prove the Network theorems.

Electronics:

7.Study of Basic gates.

8.Half wave and full wave rectifiers

9.IV Characteristics of Silicon Controlled Rectifiers

10. Numerical Aperture

11.Loss measurement using optical fibre.

12. Differential Amplifiers.

TOTAL HOURS : 45 Hours

THEORY	TUTORIAL	PRACTICAL	TOTAL
30	0	30	60

TEXTBOOKS

- 1. Electric Circuits A.Chakrabarhty, Dhanipat Rai & Sons.
- 2. Network analysis N.C Jagan and C. Lakhminarayana, BS publications.
- 3. Electrical Machinery by Dr.P.S.Bimbhra
- 4. Elecric Drives N. K. DW, P. K. SEN
- 5. PHI Learning Pvt. Ltd., 01-Jan-1999 Technology & Engineering
- 6. Electronics Device and circuits by Jacob Milman and Christos C. Halkias, Tata Macgraw Hill Publication [Second Edition].
- 7. Utilization of Electric Energy by E. Openshaw Taylor, Orient Longman.

1.Digital Electronics: An Introduction to Theory and Practice- William Gothmann H 2.PallabBhattcharya "semiconductor opto electronic devices"Prentice Hall of india Pvt Ltd,New Delhi,2006

REFERENCE

1	Basic Electronics devices and Circuits by Mahesh B Patil, PHI Learning PVT. Ltd.
2.	Utilization of Electrical Power including Electric drives and Electric traction – by N. V. Suryanarayana, New Age International (P) Limited, Publishers, 1996

	PO1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO2	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO3	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO4	1	1	0	0	2	1	1	0	0	1	0	0	1	1
CO5	1	1	0	0	2	1	1	0	0	1	0	0	1	1
Total	5	5	0	0	10	5	5	0	0	5	0	0	5	5
1-5 = 1, 6-10 = 2, 11-15 = 3														
0 – No	0 – No relation, 1 – Low relation, 2-Medium relation, 3- High relation													

Table:1 Mapping of CO's with PO:

COURSE	CODE	XNT506D	L	Т	Р	С	
COURSE	NAME	MECHANICAL SYSTEM DESIGN	2	0	1	3	
PREREQ	UISITES	Nil	L	Т	Р	Н	
C:P:A		2.75:1:0.25	2	0	2	4	
COURSE	OUTCOME	S	DOM	IAIN	LE	VEL	
CO1 Define mechanical systems and solve various mechanical system elements in mathematical form. Cognitive, Psychomotor Remove the psychomotor Gui response Cognitive, Psychomotor Psychomotor Approximate the psychomotor							
CO2	their confi	-	Cogn Psycho		Remen Apply Guided respon	d	
CO3	cylinders a	<i>about cylinders</i> , Design different type of and pressure vessels and <i>Solve</i> for different s of cylinders and pressure vessels.	Cogn Psycho		Under , Appl Origin		
CO4	system, <i>M</i> system, <i>s</i>	Tell different configurations of belt conveyor <i>leasure</i> design parameters of belt conveyor <i>olve</i> for different conditions of material ion system.	Cogn Psycho		Under , Appl Guide respon	d	
CO5	<i>Explain</i> a Mohr's cir	bout high energy ball mill <i>Identify sketch</i> rcle for different complex loading conditions <i>e</i> stress value for different failure condition.	Cogn Psycho		Under , Appl Comp	standing ying,	
UNIT I	MECHAN	NICAL SYSTEMS			6+		
	•	Basic elements of mechanical system – Sp	pring-Dar	nper-Ma	ass–Tran	slational	
Systems-R UNIT II		tems–Energy storage elements DAMPER AND MASS			6+	6	
Capacitance elements- mass-sprin	e–Resistance springs in se g–damper sy	-Inductance behavior of mechanical system ries –springs in parallel–frequency response of stem	f mass–sp		eling of	system	
UNIT III Dagign of		OF CYLINDERS AND PRESSURE VESSE			6+		
U	•	Thin and thick cylinders–design of hydraulic cylinders– Gasketed joints in cylindrical vessel		cumatic	cynnaer	s– auto-	
UNIT IV		OF BELT CONVEYER SYSTEM FOR MA		4	6+	6	
containeriz covered an	oncept – ba ation. Belt co d fabric ply l irement of h	sic principles – objectives of material has onveyors – Flat belt and troughed belt conveyo pelts – belt tensions – conveyor pulleys – belt prizontal belt conveyors for frictional resistance CHNOLOGY AND MECHANICAL SYSTI	rs – capao idlers – to e of idler	city of co ension ta and pull	onveyor ake-up s	– rubber ystems –	
Design of physical v	nano particle apour depos	synthesizing systems-High Energy Ball mills ition system –spin coating units-Design of 1 and DFMA.	-Chemica	ıl Vapou	ir deposi	ition and	

LIST OF	EXPERIMENT	S			CO				
1	Observation of	mechanical system elements like spring	g, mass,		1				
	Damper and Sh	nock absorber.							
2	Design of sprin	ng and damper			2				
3 Exercise on Pressure Vessels Designing as per IS code									
4 Observation of Hydraulic and Pneumatic system and its components									
5 Observation of specification of different type of material handling system									
6	Design of belt	conveyor system			4				
7	Design of Ball	mill (nano particle synthesizer)			5				
8	Design of mole	ecular mechanical system components			5				
	LECTURE	TUTORIAL	PRACTICAL	ТОТА	L				
HOURS	30								
HOURS 50 0 50 60 TEXT BOOKS 0									
TEXT BO		0		00					
	OKS	esign of Machine ElementsI, Tata McG	~ ~						
1. Bha	OKS andari V.B. —D	~	raw Hill Pub. Co. I						
1. Bha	OKS andari V.B. —Do inal R.C, Fundar	esign of Machine Elementsl, Tata McG	raw Hill Pub. Co. I						
1. Bha 2. Juv REFEREN	OKS andari V.B. —D rinal R.C, Fundar NCES	esign of Machine Elementsl, Tata McG	raw Hill Pub. Co. I n, Wiley, India	Ltd.					
1. Bha 2. Juv REFERE 1. Shig	OKS andari V.B. —Do inal R.C, Fundar NCES ley J. E. and Mis	esign of Machine Elements ^{II} , Tata McG mentals of Machine Components Desig	raw Hill Pub. Co. I n, Wiley, India Designl, McGraw I	Ltd.					
1. Bha 2. Juv REFEREN 1. Shig 2. M. F	OKS andari V.B. —Do inal R.C, Fundar NCES ley J. E. and Mis 5. Spotts, —Mecl	esign of Machine Elements , Tata McG mentals of Machine Components Designering	raw Hill Pub. Co. I n, Wiley, India Designl, McGraw I	Ltd.					
1. Bha 2. Juv REFEREN 1. Shig 2. M. F 3. Desi	OKS andari V.B. —Do inal R.C, Fundar NCES ley J. E. and Mis 5. Spotts, —Mecl	esign of Machine Elements ^{II} , Tata McG mentals of Machine Components Design schke C.R., —Mechanical Engineering hanical Design Analysis ^{II} , Prentice Hall G. College of Technology, Coimbatore	raw Hill Pub. Co. I n, Wiley, India Designl, McGraw I	Ltd.					
1. Bha 2. Juv REFEREN 1. Shig 2. M. F 3. Desi 4. Mula	OKS andari V.B. —Do inal R.C, Fundar NCES ley J. E. and Mis 5. Spotts, —Mecl gn Data—, P.S.C ani, I. G., —Belt	esign of Machine Elements ^{II} , Tata McG mentals of Machine Components Design schke C.R., —Mechanical Engineering hanical Design Analysis ^{II} , Prentice Hall G. College of Technology, Coimbatore	raw Hill Pub. Co. I n, Wiley, India Design ^{II} , McGraw I Inc	Ltd.					
1. Bha 2. Juv REFEREN 1. Shig 2. M. F 3. Desi 4. Mula	OKS andari V.B. —Do inal R.C, Fundar NCES ley J. E. and Mis S. Spotts, —Mecl gn Data—, P.S.C ani, I. G., —Belt enko, Material H	esign of Machine Elements ^{II} , Tata McG mentals of Machine Components Design schke C.R., —Mechanical Engineering hanical Design Analysis ^{II} , Prentice Hall G. College of Technology, Coimbatore Conveyors ^{II}	raw Hill Pub. Co. I n, Wiley, India Design ^{II} , McGraw I Inc	Ltd.					

6. http://nptel.ac.in/courses/112106064/1#

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO2	3	3	2	3	3	1	3	1	1	1	3	3	3	-
CO3	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO4	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO5	3	3	2	3	3	1	3	1	1	1	3	3	3	-
CO6	3	3	1	3	3	2	3	2	3	3	2	3	3	-

Table 1: COs versus POs mapping

1-5 = 1, 6-10 = 2, 11-15 = 3

COUSE CODEXNT506ELT								С		
COUSE NA	ME	MECHANICS OF M	IATERIALS		2	0	1	3		
PREREQU	ISITES	ENGINEERING MI	ECHANICS,	APPLIED	L	Т	Р	Η		
		PHYSICS								
C:P:A		3:0:0			2	0	2	4		
COURSE (DUTCOME	5		DOMAIN		LE	VEL			
CO1	Understand	the concepts of Stree	ss and Strain	Cognitive		Und	lerstan	d		
CO2	Analyse de	formation in shaft and	springs	Cognitive		Ana	lyse			
CO3	<i>Identify</i> the	e stresses in thin and th	ick cylinders	Cognitive		App	oly			
CO4	Solve beam	s for transverse loading	5	Cognitive		Eva	luate			
CO5										
UNIT – I	STRES	S AND STRAIN					(6+7		
Stress and s	strain – Defi	nition – Tension, Com	pression and She	ear stress - Def	ormat	ion of	simp	e and		
compound b	oars – Therm	al Stress – Volumetric	strain – Elastic C	onstants.						
UNIT – II	TORSI	ON					(6+8		
Torsion For	mulation Str	ess – Deformation in h	ollow shaft and st	epped shaft –def	flectio	n in sł	naft			
		es in helical springs – d								
UNIT – III		YLINDERS AND TH			- T	0	9	9		
		hell – Longitudinal str	ess and circumfe	rential stress – I	Deforr	nation	in thi	in and		
		al Shells – Deformatio								
UNIT – IV	1	NG OF BEAMS	1					6+6		
		ng – Cantilever ,Simpl	v supported and c	overhanging beau	ns - S	hear f		0.0		
		grams – Theory of Sin		, ennanging eeu		iioui i	0100			
UNIT – V		CTION OF SYMME						6+6		
		Computation of Slope a		ouble Integration	n metł	nod _				
	d – Macaulay			ouble integratio	ii iiicu	10 u – .		110		
		compressive strength	of a brick specim	ien						
		tensile strength of a H	-							
		shear strength of given		1						
		compressive strength			ng					
		torsion for a given mil			0					
		modulus of rupture the	-							
		laxwell's reciprocal the	-	C						
8. Dete	rmination of	Young's modulus of g	given specimen by	conducting def	lectior	ı test.				
LECTURE TUTORIAL PRACTICAL TOTAL										
HOURS 30 0 30 60										
TEXT										
1. Dr.R. K Bansal , A Text Book of Strength of Materials, Laxmi Publication, 2007.										
2. R.K Rajput, Strength of Materials, S.Chand & co., New Delhi, 2008.										
REFEREN										
1. Egor	P Popov, "	Engineering Mechanic	s of Solids, Prent	tice Hall of India	- New	Delh	i			
200	1.	-								
2. R.S	ubramanian ,	" Strength of Material	s", Oxford Univ	ersity Press. Oxf	ord H	igher				
Educ	Education Series 2007									

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO2	3	3	2	3	3	1	3	1	1	1	3	3	3	-
CO3	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO4	3	3	2	3	3	1	3	1	1	1	2	3	3	-
CO5	3	3	2	3	3	1	3	1	1	1	3	3	3	-
CO6	3	3	1	3	3	2	3	2	3	3	2	3	3	-

Table 1: COs versus POs mapping

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE	CODE	XGS507			L	Т	Р	C		
COURSE	E NAME	BUSINESS COMMUNICA	ATION		1	0	0	1		
PREREQ	UISITE:	Communication Skill and I Knowledge	Basic Grammar	•	L	Т	Р	Н		
C:P:A		3:0:0			1	0	2*	3		
COURSE	E OUTCON	AES		Domain	L	Level				
C01	CO1 <i>Define</i> and <i>Identify</i> different styles to various forms of business communication. Cognitive Remember									
CO2		the proper tone of language re nd speaking in business comn		Cognitive	R	eme	mber			
CO3		knowledge on grammar and ot in writing various forms of bu ication.		Cognitive	U	nder	stand			
CO4										
CO5							,			
UNIT I	INTROI	DUCTION TO BUSINESS O	COMMUNICAT	ΓΙΟΝ				10		
Modern d	evelopment	s in the style of writing letters	s memos and rep	orts: block	lette	rs, se	emi bl	ock		
letters, ful	l block lette	ers, simplified letters etc.,								
UNIT II		F LANGUAGE						10		
		whone memos/ letters/ assignm communication.	ents, art of writi	ng E-mail e	tc. fe	ature	es of			
UNIT III	GRAM	MAR						10		
		l passive voice; the use of grad anguage used in these writing		, accuracy, e	exact	ness	, the t	one		
UNIT IV	TYPES	OF REPORTS						5		
The forma	at of various	s types of Reports/ projects etc	с.							
UNIT V		CSS WRITING						10		
		orts, proposals and minutes.					1			
	TURE	TUTORIAL	PRACT	ICAL		T	OTAI	Ĺ		
	45	0	0				45			
TEXT BO	OOKS									
1.	John Seal	K S, Communicating in Busin		2	,			vt.		
1. https://i 2.http://co	ERENCES is.muni.cz/e	el/1456/jaro2014/MPV_COM				nicat	ion.pc	lf		

SYLLABUS

SEMESTER - VI

COUR	SE CODE	XNT601			L	Т	Р	С	
COUR	SE NAME	TOTAL QUALITY MANAG	EMENT		3	0	0	3	
PRERI	EQUISITE	Nil			L	Т	Р	H	
C:P:A		3:0:0			3	0	0	3	
COUR	SE OUTCON	MES		Dom	ain	Leve	el		
CO1	<i>List</i> and <i>Exp</i> and its limita	<i>lain</i> the basic concepts of total quations.	ality concepts	Cogr	nitive		ember erstand		
CO2		<i>Explain</i> the Customer satisfactio supplier selection and appraise the ciple.		Cogr	nitive		yzing, ıating		
CO3	Explain and	Apply the Statistical Process Con	trol Tools.	Cogr	nitive	Unde Appl	erstand ing	ing,	
CO4	Select and Ex significance.	cplain the different TQM tools ar	nd their	Cogn	nitive	Reme	emberi erstand		
CO5		mportance aspects of different qu	ality systems.	Cogn	nitive		erstand	<u> </u>	
UNIT I	INTRODU	CTION						9	
UNIT I Custome Custome – Perfor – Kaize Relation UNIT I The sev Populati Concept	TQM PRIN er satisfaction er retention – I mance appraise en – Supplier ship developm II STATIST en tools of qu on and sample	 Customer perception of qua Employee involvement – Motivat al – Benefits – Continuous proces partnership – Partnering – So ent – Performance measures – Ba CAL PROCESS CONTROL (S ality – Statistical fundamentals – Normal curve – Control charts New seven management tools. 	lity – Customer ion, empowerme ss improvement - urcing – Suppli- asic concepts – S SPC) – Measures of c	ent, tea - Juran er sele trategy	tenden	cognitic – PDS – Supp ormand cy and	on and SA cyc plier ra ce mea	reward ele – 5S ating – sure. 9 rsion –	
Benchmarking – Reasons to benchmark – Benchmarking process – Quality Function Deployment (QFD) – House of quality – QFD process – Benefits – Taguchi quality loss function – Total Productive Maintenance (TPM) – Concept – Improvement needs – FMEA – Stages of FMEA. UNIT V QUALITY SYSTEMS Need for ISO 9000 and other quality systems – ISO 9000:2000 quality system – Elements –									
Implementation of quality system – Documentation – Quality auditing – TS 16949 – ISO 14000 –Concept, requirements and benefits.									
LF	CTURE	TUTORIAL	PRAC		L		TOT		
трут і	45 300KS	0	()			4	5	
1.Dale H	I. Besterfiled, R. Evans and	et. Al. "Total Quality Managemen William M. Lidsay, "The Manage							

REFERENCES

1. Feigenbaum, A.V., "Total Quality Management", McGraw Hill, 1991.

2. Oakland, J.S., "Total Quality Management", Butterworth Heineman, 1989.

3. Narayana V. and Sreenivasan, N.S., "Quality Management – Concepts and Tasks", New Age International, 1996.

4. Zeiri, "Total Quality Management for Engineers", Wood Head Publishers, 1991.

Table 1: Mapping of COs with POs

Mapping COs with POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1										2
CO2							2			
CO3				2						
CO4			2	2				2		
CO5								2		2
Total										
Scaled										

0 - No relation

1- Low relation

2- Medium relation

3 – High relation

COURSE CO	ODE	XNT602		L	Т	Р	С	
COURSE NA	AME	COLLOIDS AND SURFACES ENG	GINEERING	3	0	1	4	
C:P:A		2:1:0		L	Т	Р	H	
PREREQUI	SITE	PHYSICS, CHEMISTRY AND MA SCIENCE	TERIAL	3	0	2	5	
COURSE O	UTCON	ЛЕS	DOMAIN	LEV	EL			
C01	1	e and explain colloids and its	Cognitive Psychomotor	Unde Rem Appl	embe ying	er		
CO2	Under interfa	<i>rstand</i> and <i>describe</i> the properties of aces	Cognitive Psychomotor	Guid Unde Rem Appl	erstar embe	nd er	se	
CO3	Under	rstand and describe the properties of	Cognitive	Guid Unde	ed re	spon	se	
	interfa	ices	Psychomotor	Rem Appl Guid	ying		se	
CO4	-	<i>in</i> radiation and light scattering ds and surfaces	Cognitive	Understand Remember				
			Psychomotor	Guided response				
CO5		<i>rstand</i> and <i>explain</i> the Vander walls and its significance on colloids and es	Cognitive Psychomotor	Understand Remember Applying Guided response				
UNIT - I	The c	olloidal state		Guid		-	<u>9+</u>	
purification of	of colloi otion a tion.	fication of colloidal systems- Struct idal systems. Kinetic properties-The r nd translational diffusion- The ultra al properties	notion of particl	es in	liqui	d me e-Ro	dia	
$\mathbf{UNII} = \mathbf{II}$	Optica	ai properties					9+1	
Surface and i micelle forma	nterfaci ation- Sp	n microscopy- Light scattering. Liqu al tensions- Adsorption and orientation preading- Monomolecular films.		-				
UNIT - III	Interf	aces					9+	
-	. The so	ce- Adsorption of gases and vapours on lid-liquid interface- Contact angles and tion.	-					
UNIT – IV		Static and Dynamic Light Scattering and Other9+6Radiation Scattering						
		ion of Radiation with Matter Scatter Experimental Aspects of Light Scattering				-		

to Intra particle- Interference Effects and Structure of Particles Scattering by Large, Absorbing Particles - Dynamic Light Scattering.

UNIT – V	Vander Waals Forces	9+6

Introduction- Vander Waals Forces and Their Importance in Colloid and Surface Chemistry-Molecular Interactions and Power Laws- Molecular Origins and the Macroscopic Implications of Vander Waals Forces- Vander Waals Forces Between Large Particles and Over Large Distances.

Calculating Vander Waals Forces Between Macroscopic Bodies Theories of Vander Waals Forces Based on Bulk Properties Effect of the Medium on the Vander Waals Attraction.

List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

TOTAL HOURS

Lecture	Tutorial	Practical	Total
45	0	30	75

TEXTBOOK

1. "Principles of Colloids and Surface Chemistry, 1997 Third Edition by Paul. C. Hiemenz and Raj Rajagopalan, Marcel Dekker Publishers, Inc. 270 Madison Avenue, New York- 10016."

REFERENCE and E-REFERENCE

1. NPTEL

Table 1 : COs versus POs mapping

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	-	-	-	-	1			2	
CO4	2	1	1	1	-	-	-	-	1			2	
CO5	2	1	1	1	-	-	-	-	1			2	
Total	10	5	5	5	-	-	_	-	5			10	
	2	1	1	1	-	-	-	-	1			2	

1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3

0 - No relation

1- Low relation

2- Medium relation

3- High relation

COURSE (CODE	XNT603		L	Т	Р	С
COURSE N	IAME	NANOMATERIALS FABRICATIO TECHNIQUES –II	3	0	1	4	
C:P:A		2:0.75:0.25		L	Т	Р	Н
PREREQU	ISITE	MATERIAL SCIENCE, APPLIED AND CHEMISTRY	PHYSICS	3	0	2	5
COURSE (OUTCON	MES	DOMAIN	LEV	VEL		
C01	techni	<i>e</i> and <i>explain</i> different Self assembly iques and its principles for naterial fabrication	Cognitive Psychomotor	Ren	erstan nembo lying	er	
			Affective	Org	ded re anizir	ng	ise
CO2		nd <i>Describe</i> self-assembly techniques nomaterial fabrication	Cognitive Psychomotor	Ren	erstan nembo lying	er	
			Affective	Gui Org	ded re anizir	espon 1g	se
CO3		and <i>illustrate</i> the Nano fabrication iques using photon beam	Cognitive Psychomotor	Guided response Organizing			
			Affective				
CO4		and <i>explain</i> the Nanofabrication by ged Beams	Cognitive Psychomotor	Ren App	erstan nembe lying	er	
			Affective	Org	ded re anizir	ıg	se
CO5		, <i>Outline</i> different types of naterial fabrication using Scanning s	Cognitive Psychomotor	Understand Remember Applying			
			Affective	Gui	ded re anizir	espon	
assembly in	oroach to solution ns ,Mech	Assembly -I o self-assembly - intermolecular and i: micelles - molecular self-assembly in anochemistry: grinding and milling dev Assembly –II	n solution ii: bila				
Self-assemb fabrication b	ly at inte by self as	rfaces - bio-mimetic self-assembly - me sembly – Nanostructured thin film fabre					
UNIT - III		odevices and nanomachines fabrication by Photons					9+3
Introduction	- Princ	iple of Optical Projection Lithography o UV - Extreme UV-X-ray - Optical	· •		•		orte

Lithography	t Lowk1E	actor Off Avia Illumi	nation (OAI) Dhaga	bifting Most (DSM)
		actor - Off-Axis Illumin		0
		ction (OPC)- Photoresis		
-		Optical Lithography - I	interferometric Optical	Litnography -Maskless
Optical Lithog				0.0
UNIT – IV		rication by Charged Bea		9+3
		Charged Particle Beam -		
0		y Effect - Electron Scatte		
of Secondary	Electrons -	Low-Energy E-Beam Lit	hography - Ion Scatterin	ng -Resist Materials and
Processes-Sen	sitivity of	Resist Materials -	Contrast of Resist M	Interials - Resolution
	Processes	- Ion Sputtering and	Redeposition - Charge	ed Particles Projection
Lithography.				
$\mathbf{UNIT} - \mathbf{V}$	Nanofab	rication by Scanning Pr	obes	9+3
of Resist by Nanofabrication Nanofabrication	STM - E on -Field on - Electr Mechanical	of SPMs - Exposure of Exposure of Resist by E- Induced Deposition - ochemical Etching - Field Scratching - High-Throu	NSOM- Oxidation Lit - Dip-Pen Nanoliti d-induced Decomposition	hography Additive hography- Subtractive
List of Exper	iments			
1. Nano i	nicelle fab	rication by self assembly		
2. Nanoc	rytal synth	esis by self assembly		
3. Wet C	hemical Et	ching of Copper on prede	efined pattern	
4. Mask	Preparatior	on Silk Screen for mode	rate resolution lithograp	bhy
-		k transfer using screen pr		
	-	der synthesis by Ball Mi	lling	
		tion by self-assembly		
	-	cle synthesis by Electroc	-	
		building with DNA Bric	ks (Video Demo)	
		tion using AFM		
		using AFM		
		osmes/Niosomes		
	•	ne synthesis		
TOTAL HOU Lectur		Tutorial	Practical	Total
45		0	15	60
TEXTBOOK				
1. "Nano	fabrication	- Principles, Capabilities	s and Limits" Zheing Cu	ii, Springer ,2008
		nd nanotechnology" Yoo		
REFERENC			· • ·	
3. "Introduct	tion to Nar	otechnology," Frank J. C	Wens & Charles P. Pool	le, Wiley-IEEE, 2003.
		noscience & Nanotechno		
Publisher			,	
		rocedures," H. P. Klung	& L. E. Alexander	

Table 1 : COs versus POs mapping

CO/PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PSO1	PSO2
CO1	3	3	1	1	2	1	1	1	1	1
CO2	3	3	1	1	2	1	1	1	1	1
CO3	3	3	1	1	2	1	1	1	1	1
CO4	3	3	1	1	2	1	1	1	1	1
CO5	3	3	1	1	2	1	1	1	1	1
Total	15	15	5	5	10	5	5	5	5	5
	3	3	1	1	2	1	1	1	1	1

1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3

0 - No relation 1- Low relation 2- Medium relation

3- High relation

COURSE	CODE	XNT604		L	Т	P	С
COURSE	-	NANOMATERIA CHARACTERIZA II	3	1	1	5	
PREREQU		NANOMATERIA CHARACTERIZA	L	Т	Р	H	
C:P:A		1.5:1.2:0.3		3	2	2	7
COURSE	OUTCOMES		DOMAIN	LF	EVE	L	
CO1	Explain the conce	pts Basic Micro	Cognitive	Ur	nders	stand	ł
	scopes		Psychomotor	Re	mer	nber	•
CO2	Explain and unde	• -	Cognitive		nders		d,
	microscopes to char	racterise the nano	Psychomotor	Gu	iideo	1	
	materials				spor		
CO3	Determine and		Cognitive		nders		d,
	Magnetic Resonan	1 1.	Psychomotor		iideo	1	
	& Thermal analysis			Se			
CO4	Describe and Illust		Cognitive		nders		,
		techniques &	Psychomotor	Me	echa	nisn	n
	Magnetic characteri						
CO5	Classify and Desc		Cognitive		nders		
UNIT I	characterization tech Microscopy technic		Psychomotor	_	echa + 6 +		n
modes, Ana	llysis of micrographs, Microscopy techniqu		ution, TEM instruments, Vario		mag + 6 +		
			Electron Microscopy, -	Ator	nic	Fo	rce
	v, Scanning Probe Mic	roscopy					
UNIT III	Magnetic Resonand techniques	ce Spectroscopy	& Thermal analysis			6	
	teeninques		-	15	+6+	Ū	
-	troscopy- Introductio	1	scopy- Chemical shifts and J-	coup	oling	<u>- O</u>	ne-
dimensiona	troscopy- Introduction proton NMR- One d	imensional NMR o	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and	coup d 19	oling F)—	- O	
dimensiona Thermal A	troscopy- Introductio l proton NMR- One d Analysis: Differential	imensional NMR o thermal analysis	scopy- Chemical shifts and J-	coup d 19	oling F)—	- O	
dimensiona Thermal A (DSC), The	troscopy- Introduction l proton NMR- One de Analysis: Differential rmo-gravimetric analy	imensional NMR o thermal analysis ysis (TGA)	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and (DTA), Differential Scannir	coup d 191 ng C	oling F)— Caloi	- O	
dimensiona Thermal A	troscopy- Introduction l proton NMR- One di Analysis: Differential rmo-gravimetric analy Electrical chara	imensional NMR o thermal analysis ysis (TGA) acterization tec	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and	coup d 191 ng C	oling F)—	- O	
dimensiona Thermal A (DSC), The UNIT IV	troscopy- Introduction l proton NMR- One di Analysis: Differential rmo-gravimetric analy Electrical chara characterization te	imensional NMR o thermal analysis ysis (TGA) acterization teo chniques	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and (DTA), Differential Scannir chniques & Magnetic	coup d 191 ng C 15	oling F)— Calor + 6 +	;- Or - rime 6	try
dimensiona Thermal A (DSC), The UNIT IV Electrical r Magnetism,	troscopy- Introduction l proton NMR- One di Analysis: Differential rmo-gravimetric analy Electrical chara characterization te esistivity in bulk and Measurement Me	imensional NMR o thermal analysis <u>ysis (TGA)</u> acterization teo chniques 1 thin films, Hall ethods, Measuring	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and (DTA), Differential Scannir	coup d 19 ng C 15 Intro	oling F)— Calor + 6 +	- rime 6 tion	try to
dimensiona Thermal A (DSC), The UNIT IV Electrical r Magnetism, Magnetizat	troscopy- Introduction l proton NMR- One de Analysis: Differential rmo-gravimetric analy Electrical chara characterization te esistivity in bulk and	imensional NMR o thermal analysis <u>vsis (TGA)</u> acterization teo chniques 1 thin films, Hall ethods, Measuring od	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and (DTA), Differential Scannir chniques & Magnetic effect, Magneto resistance-	coup d 19 ng C 15 Intro ce,	oling F)— Calor + 6 +	- fime 6 tion	try tc
dimensiona Thermal A (DSC), The UNIT IV Electrical r Magnetism, Magnetizati UNIT V UV-VIS sp	troscopy- Introduction proton NMR- One dia nalysis: Differential rmo-gravimetric analy Electrical chara characterization te esistivity in bulk and Measurement Me ion by Induction meth Optical characterization pectroscopy, Fourier	imensional NMR o thermal analysis vsis (TGA) acterization teo chniques thin films, Hall ethods, Measuring od zation techniques	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and (DTA), Differential Scannir chniques & Magnetic effect, Magneto resistance-	coup d 19 ng C 15 Intro ee, 15	oling F)— Calor + 6 + Mea <u>+6+</u>	tion	try to ing
dimensiona Thermal A (DSC), The UNIT IV Electrical r Magnetism, Magnetizati UNIT V UV-VIS sp	troscopy- Introduction l proton NMR- One di Analysis : Differential rmo-gravimetric analy Electrical chara characterization te esistivity in bulk and Measurement Me ion by Induction meth Optical characteriz	imensional NMR o thermal analysis vsis (TGA) acterization teo chniques thin films, Hall ethods, Measuring od zation techniques	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and (DTA), Differential Scanning chniques & Magnetic effect, Magneto resistance- g Magnetization by Forc	coup d 19 ng C 15 Intro ee, 15	oling F)— Calor + 6 + Mea <u>+6+</u>	tion	try tc
dimensiona Thermal A (DSC), The UNIT IV Electrical r Magnetism, Magnetizati UNIT V UV-VIS sp	troscopy- Introduction l proton NMR- One di Analysis: Differential rmo-gravimetric analy Electrical charac characterization te esistivity in bulk and Measurement Me ion by Induction meth Optical characteriz pectroscopy, Fourier	imensional NMR o thermal analysis vsis (TGA) acterization teo chniques thin films, Hall ethods, Measuring od zation techniques	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and (DTA), Differential Scanning chniques & Magnetic effect, Magneto resistance- g Magnetization by Forc	coup d 19 ng C 15 Intro ee, 15	oling F)— Calor + 6 + Mea <u>+6+</u>	tion	try to ing
dimensiona Thermal A (DSC), The UNIT IV Electrical r Magnetism, Magnetizati UNIT V UV-VIS sp photoelectro TEXT 1. Coli McC	troscopy- Introduction l proton NMR- One de Analysis: Differential rmo-gravimetric analy Electrical chara characterization te esistivity in bulk and Measurement Me ion by Induction meth Optical characteriz pectroscopy, Fourier on spectroscopy	imensional NMR o thermal analysis <u>vsis (TGA)</u> acterization teo chniques 1 thin films, Hall ethods, Measuring od zation techniques transform infrared ne M. McCash, Fu d., 2000.	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and (DTA), Differential Scanning chniques & Magnetic effect, Magneto resistance- g Magnetization by Force spectroscopy, Raman spectro ndamentals of molecular spect	cour d 191 ng C 15 Intro e, 15 cosco	F)— Calor +6+ Mea +6+ ppy,		try to ing ray ata
dimensiona Thermal A (DSC), The UNIT IV Electrical r Magnetism, Magnetizati UNIT V UV-VIS sp photoelectro TEXT 1. Coli McC	troscopy- Introduction l proton NMR- One de Analysis: Differential rmo-gravimetric analy Electrical chara characterization te esistivity in bulk and Measurement Me ion by Induction meth Optical characteriz pectroscopy, Fourier on spectroscopy	imensional NMR o thermal analysis <u>vsis (TGA)</u> acterization teo chniques 1 thin films, Hall ethods, Measuring od zation techniques transform infrared ne M. McCash, Fu d., 2000.	scopy- Chemical shifts and J- f X-nuclei (13C, 15N, 31P and (DTA), Differential Scanning chniques & Magnetic effect, Magneto resistance- g Magnetization by Force spectroscopy, Raman spectro	cour d 191 ng C 15 Intro e, 15 cosco	F)— Calor +6+ Mea +6+ ppy,		try to ing ray ata

6. I 1. 2. 3. 4. 5. 6. 7. 8. 9. 9.	thin films and b Measuring Mag	g of the metallup oscopy and Sphanganate Solu of Food Qualit udies on Ther etup for the metally netization by the composition Thermal Prop nning Calorin al Measureme LECTURE 45	LABC urgical pectroph utions ty by U' mal and easurem Induction n of a p perties of netry (D ensts On E TU	DRATOR microscope notometry: V Spectros I Electrical nent of the on method iece of tire f Ammoniu DSC)	e, and o Spectro copic N propert electric: tread u um Nitr <u>Aaterial</u> PR A	photomet lethods ties of NiC al resistivi using there ate and Po s using Co ACTICAI 30	ric Analy D2 thin f ity and th mo grave olystyren ontact M	ysis of ilm using SEM hermo power of imetric analysis he by					
6. I 1. 2. 3. 4. 5. 6. 7. 8. 9. 9.	The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental set thin films and b Measuring Mag To determine th (TGA). Analysis of the Differential Sca Nano mechanic	g of the metallup oscopy and Sphanganate Solu of Food Qualit udies on Ther etup for the metally netization by the composition Thermal Prop nning Calorin al Measureme LECTURE 45	LABC urgical pectroph utions ty by U' mal and easurem Induction n of a p perties of netry (D ensts On E TU	DRATOR microscope notometry: V Spectros l Electrical nent of the on method iece of tire f Ammoniu DSC) Different M UTORIAL 30	e, and o Spectro copic N propert electric: tread u um Nitr <u>Aaterial</u> PR A	photomet lethods ties of NiC al resistivi using there ate and Po s using Co ACTICAI 30	ric Analy D2 thin f ity and th mo grave olystyren ontact M	ysis of ilm using SEM hermo power of imetric analysis he by lode AFM TAL HOURS					
6. I 1. 2. 3. 4. 5. 6. 7. 8. 9. 9.	The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental set thin films and b Measuring Mag To determine th (TGA). Analysis of the Differential Sca Nano mechanic	g of the metallup oscopy and Sphanganate Solup of Food Quality udies on There tup for the metally metization by metization by the composition Thermal Prop nning Calorin al Measureme LECTURE	LABC urgical pectroph utions ty by U mal and easurem Induction n of a p perties of netry (D ents On	DRATOR microscope notometry: V Spectros l Electrical nent of the on method iece of tire f Ammoniu DSC) Different M	e, and o Spectro copic M proper electric: tread u um Nitr Material	photomet lethods ties of NiC al resistivi using there ate and Po s using Co	ric Analy D2 thin f ity and th mo grave olystyren ontact M	ysis of ilm using SEM hermo power of imetric analysis he by lode AFM TAL HOURS					
6. I 1. 2. 3. 4. 5. 6. 7. 8. 9. 9.	The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental set thin films and b Measuring Mag To determine th (TGA). Analysis of the Differential Sca Nano mechanic	g of the metallic poscopy and Sp nanganate Solu of Food Qualit udies on Ther etup for the me ulk materials netization by the composition Thermal Prop nning Calorin al Measureme	LABC urgical pectroph utions ty by U mal and easurem Induction n of a p perties of netry (D ents On	DRATOR microscope notometry: V Spectros I Electrical nent of the on method iece of tire f Ammoniu DSC) Different M	e, and o Spectro copic M proper electric: tread u um Nitr Material	photomet lethods ties of NiC al resistivi using them ate and Po s using Co	ric Analy D2 thin f ity and th mo grave olystyren ontact M	ysis of ilm using SEM hermo power of imetric analysis he by lode AFM					
6. I 1. 2. 3. 4. 5. 6. 7. 8.	The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st thin films and b Measuring Mag To determine th (TGA). Analysis of the Differential Sca	g of the metalli poscopy and Sp nanganate Solu of Food Qualit udies on Ther etup for the me ulk materials netization by the composition Thermal Prop nning Calorin	LAB(urgical i pectroph utions ty by U mal and easurem Induction n of a p perties of netry (D	DRATOR microscope notometry: V Spectros I Electrical nent of the on method iece of tire f Ammoniu DSC)	e, and o Spectro copic M propert electrica e tread u um Nitr	photomet lethods ties of NiC al resistivi using them ate and Po	ric Anal D2 thin f ity and th mo grav	ysis of ilm using SEM hermo power of imetric analysis he by					
6. I 1. I 2. I 3. I 4. I 5. I 6. I 7. I 8. I	The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental set thin films and b Measuring Mag To determine th (TGA). Analysis of the	g of the metalli oscopy and Sp nanganate Solu of Food Qualit udies on Ther etup for the me ulk materials netization by ne composition Thermal Prop	LABC urgical : pectroph utions ty by U mal and easurem Induction n of a p	DRATOR microscope notometry: V Spectros I Electrical nent of the on method iece of tire f Ammoniu	e, and o Spectro copic N propert electrica	photomet lethods ties of NiC al resistivi	ric Anal D2 thin f ity and the mo grave	ysis of ilm using SEM hermo power of imetric analysis					
6. I 1. 2. 3. 4. 5. 6. 7. 7.	The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental st thin films and b Measuring Mag To determine th (TGA).	g of the metalli oscopy and Sp nanganate Solu of Food Qualit udies on Ther etup for the me ulk materials metization by ne composition	LABC urgical : pectroph utions ty by U mal and easurem Induction n of a p	DRATOR microscope notometry: V Spectros I Electrical nent of the on method iece of tire	e, and o Spectro copic N propert electrica	photomet lethods ties of NiC al resistivi	ric Anal D2 thin f ity and the mo grave	ysis of ilm using SEM hermo power of imetric analysis					
6. I 1. I 2. I 3. I 4. I 5. I 6. I	The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental se thin films and b Measuring Mag To determine th	g of the metally oscopy and Sp nanganate Solu of Food Qualit udies on Ther etup for the me ulk materials netization by	LABC urgical : pectroph utions ty by U mal and easurem	DRATOR microscope notometry: V Spectros l Electrical ment of the on method	e, and o Spectro copic N proper electric	photomet Iethods ties of NiC al resistivi	ric Anal D2 thin f	ysis of ïlm using SEM hermo power of					
6. I 1. I 2. I 3. I 4. I 5. I 6. I	The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental set thin films and b Measuring Mag	g of the metally oscopy and Sp nanganate Solu of Food Qualit udies on Ther etup for the me ulk materials netization by	LABC urgical : pectroph utions ty by U mal and easurem	DRATOR microscope notometry: V Spectros l Electrical ment of the on method	e, and o Spectro copic N proper electric	photomet Iethods ties of NiC al resistivi	ric Anal D2 thin f	ysis of ïlm using SEM hermo power of					
6. I 1. 2. 3. 4. 5.	The functioning microstructures UV/VIS Spectro Potassium Perm Determination of Experimental st Experimental se	g of the metally oscopy and Sp nanganate Solu of Food Quality udies on Ther etup for the me	LAB urgical : pectroph utions ty by U mal and	DRATOR microscope notometry: V Spectros I Electrical	e, and o Spectro copic N proper	photomet lethods ties of NiC	ric Analy	ysis of ïlm using SEM					
6. I 1. 2. 3.	The functioning microstructures UV/VIS Spectro Potassium Perm Determination of	of the metallo oscopy and Sp nanganate Solution of Food Qualit	LAB(urgical : pectroph utions ty by U	DRATOR microscope notometry: V Spectros	e, and o Spectro copic M	photomet Iethods	ric Anal	ysis of					
6. I 1. 2.	The functioning microstructures UV/VIS Spectro Potassium Perm	of the metallo oscopy and Sp nanganate Solu	LAB(urgical pectroph utions	DRATOR microscope notometry:	e, and o Spectro	photomet	1						
6. I 1. 2.	The functioning microstructures UV/VIS Spectro	of the metallo oscopy and Sp	LAB(urgical	DRATOR microscope	e, and o		1						
6. I	The functioning		LAB	ORATOR		bserve and	d interpr	et the					
6. I			LAB	ORATOR		1	1.	1					
	Introduction to S	pectroscopy: I	by Pavia	a et al.									
J. (1 D	o at al									
	Understanding N												
	NMR Spectrosco			•									
	Basic One and T	wo Dimensior	nal NM	R: by Hors	t Fiebro	olin							
REFER	RENCES												
	2004. J. I. Steinfeld, M	olecules and F	Radiatio	on, Dover, l	New Yo	ork, 1986.							
	,		oscopy	(Fourth Ed	lition),	John Wile	ey & So	ons, New York,					
5. H	 I. N. Levine, Molecular Spectroscopy, Wliey-Interscience, New York, 1975. E. B. Wilson Jr., J. C. Decius and P. C. Cross, Molecular Vibrations, Dover Publications, New York, 1980 J. M. Hollas, Modern Spectroscopy (Fourth Edition), John Wiley & Sons, New York, 												
	P. F. Bernath, S Press, 2005.	Spectra of Ato	oms an	d Molecul	es (Sec	ond Editi	on), Ox	ford University					
	Y. Leng, Mater methods, John W			i. introduce		merose	spic and	i specificação pre					

CO/PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PSO1
CO1	1	2	2	1	1	1	1	1	2
CO2	1	2	2	1	1	1	1	1	2
CO3	1	2	2	1	1	1	1	1	2
CO4	1	2	2	1	1	1	1	1	2
CO5	1	2	2	1	1	1	1	1	2
Total	5	10	10	5	5	5	5	5	10
	1	2	2	1	1	1	1	1	2

1-5 = 1, 6-10 = 2, 11-15 = 3

COURSE	CODE	XNT605A		L	Т	Р	С	
COURSE	NAME	NANOPHYSICS		2	0	1	3	
C:P:A		2:0.5:0.5		L	Т	Р	Н	
PREREQU	UISITE	Applied Physics		2	0	2	4	
COURSE	OUTCON	IES	Domain	Level				
CO1	<i>Define</i> an	d <i>explain</i> modern electronics	Cognitive	Understand Remember				
			Psychomotor	Appl		r		
			i sychomotor	Guid		spon	se	
CO2		nd and describe the solid state	Cognitive	Unde				
	physics		Psychomotor	Reme Appl		r		
			isjenomotor	Guid		spon	se	
CO3		nd and describe about two	Cognitive	Unde				
	dimension	al electron systems	Psychomotor	Reme Appl		r		
			T Sycholitotor	Guid		spon	se	
CO4	Explain s	ingle electron tunnelling	Cognitive	Understand				
				Reme		r		
			Psychomotor	Applying Guided response				
CO5	Understar	nd and explain the principle and	Cognitive	Understand				
	methods of	of sample growth and fabrication		Reme		r		
			Psychomotor	Appl Guid		enon	S A	
				Guid		spon	50	
UNIT - I		ern Electronics					6+6	
-		electronics: From CMOS technolo quantum computations. Mesoscop			-			
		and devices.	one transport. Brief	Overv	ICW	or n	lam	
UNIT – II	Solid	State Physics		6+6				
-		onventional Solid State Physics. Cr	-					
	-	n, envelope functions and effec				-		
-		ns, screening. Surfaces, Interfaces, or-metal interface. Semiconductor	•					
		Aesoscopic Physics.						
UNIT - III	6+6	6+6						
		ctron systems: general properties,	-		-			
-		es and Quantum Point Contacts: I (zation), carbon nanotubes, qua	-					
	-	onov-Bohm effect, weak localization	-		10110	- 11	iuse	
UNIT – IV		6+6						

Single-Electron Tunneling: Coulomb blockade, single-electron tunneling devices, electron pumping, etc.Quantum Dots: Role of electron-electron interaction, conductance resonances, etc.Mesoscopic superconductivity: Josephson effect and its applications, hybrid systems, etc.New Directions in Electronics. Spintronics, Molecular Electronics, Nanomechanics, Nanophotonics, Devices for Quantum Computation. Experimental Aspects (will be presented by students and taken into account for the exam grade).

6+6

Sample growth and fabrication: Single crystal growth; growth of layered structures, epitaxy liquid phase epitaxy (LPE), molecular chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), magnetron sputtering, etc. Lateral patterning (electron beam patterning) and bonding.Sample characterization: Electron microscopy (TEM, SEM); Tunneling microscopy (STM); Secondary ion mass spectroscopy (SIMS); X-ray spectroscopy; Elements of cryogenics.

List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

TOTAL HOURS

Lecture	Tutorial	Practical	Total
30	0	30	60

TEXTBOOK

1. Handbook of Nanophysics: Principles and Methods: Volume 7 Hardcover – Import, 28 Sep 2010 by Klaus D. Sattler (Editor).

REFERENCE and E-REFERENCE

1. Nanophysics And Nanotechnology: An Introduction To Modern Concepts In Nanoscience Paperback, Wolf L. E.

2. nptel

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	_	-	1			2	
CO3	2	1	1	1	-	-	_	-	1			2	
CO4	2	1	1	1	-	-	_	-	1			2	
CO5	2	1	1	1	-	-	_	-	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	-	1			2	
1-5 →	1, 6-1	0 -	2, 1	1-15 -	→3								

 Table 1 : COs versus POs mapping

0 - No relation

1- Low relation

2- Medium relation

3- High relation

COUR	SE CODE	XNT605B		L	Т	Р	C	
COURSE NAME Molecular Assembler and Modelling		Molecular Assembler and molec Modelling	olecular		0	1	3	
C:P:A 2:0.5:0.5			L	Т	Р	Н		
PREREQUISITE Physics, Chemistry and Material Science				2	0	2	4	
COURSE OUTCOMES Domain				Level				
CO1	v	explain the various molecular theory and its principles	Cognitive	Understand Remember				
			Psychomotor	Applying Guided response				
			Affective	Orga		<u> </u>		
CO2	<i>Understand</i> and <i>describe</i> the properties of interfaces		Cognitive	Understand Remember				
			Psychomotor	Appl Guid		spon	se	
			Affective	Orga				
CO3	<i>Understand</i> and <i>describe</i> the property analysis using Classical statistical mechanics		Cognitive	Understand Remember				
			Psychomotor	Appl Guid	ed re	-	se	
			Affective	Orga				
CO4 CO5	of molecules using molecular dyanamics		Cognitive	Unde Reme	embe			
			Psychomotor	Appl Guid	ed re		se	
	I in donatare d	and auriging the Monte Carlo	Affective	Organ Unde		-		
05	simulation and its applications		Cognitive	Reme	embe			
			Psychomotor	Appl Guid	ed re	-	se	
UNIT		ecular Simulation	Affective	Orga	nızın		9+6	
Fundar	nentals of mo	blecular simulations -Ab-initio Methods Theory, Geometry Optimization, Vibratio		artree-l	Fock			
UNIT		sical statistical mechanics	<u></u>				9+6	
		nechanics, elementary concepts of temporary concepts of temporary concepts are set to be averaging, ergodicity.	erature, ensembl	es and	fluc	tuati	ons	
UNIT - III Molecular Dynamic Methodology					9+6			
	•	Methodology - Force Field, Integrating nvention, Long Range Forces, Non Bond	•	iodic E	Box a	nd		
UNIT – IV Property optimization using molecular dynamics							9+6	

Temperature Control, Pressure Control, Estimation of Pure Component Properties, Radial Distribution Function; Molecular Dynamics Packages.

UNIT – V	Monte Carlo simulation	9+6
----------	------------------------	-----

Monte Carlo simulation - Monte Carlo integration, simple biasing methods, importance sampling, Markov chain, transition-probability matrix, detailed balance., Metropolis algorithm. Monte Carlo simulation in different ensembles, Monte Carlo simulation for polymer; Advanced applications.

List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

TOTAL HOURS

Lecture	Tutorial	Practical	Total
30	0	30	75

TEXTBOOK

- 1. DaanFrenkel and BerendSmit, Understanding Molecular Simulation: From Algorithms to Applications, 2e, Academic Press, New York, 2002.
- 2. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

REFERENCE and E-REFERENCE

- 1. K. Binder, The Monte-Carlo Method in Condensed Matter Physics, Berlin : Springer-verlag, 1992.
- 2. D. A. McQuarrie, Statistical Mechanics, Harper and Row, New York, 1976.
- 3. Andrew R. Leach, Molecular modelling: principles and applications, 2e, Pearson, New Delhi, 2001
- 4. NPTEL

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	2	2	2	-	-	-	-	1			1	1
CO2	2	2	2	2	-	-	-	-	1			1	1
CO3	2	2	2	2	-	-	-	-	1			1	1
CO4	2	2	2	2	-	-	-	-	1			1	1
CO5	2	2	2	2	-	-	-	-	1			1	1
Total	10	10	10	10	-	-	-	-	5			5	5
	2	2	2	2	-	-	-	-	1			1	1
1-5 →													

Table 1 : COs versus POs mapping

0 - No relation

1- Low relation

2- Medium relation

COURSE (CODE	XNT605C		L	Т	Р	С	
COURSE N	JAME	NANO SENSORS AND NANO PRO	, NANO ACTUATORS BES	2	0	1	3	
PREREQU	ISITES		d electronics engineering, and nano characterization	L	Т	Р	H	
C:P:A		2:1:1		2	0	2	4	
COURSE (DUTCOMES		DOMAIN	LF	EVE	L		
CO1	characteristics,	sensor principles, functional classify the sensors sured.	Cognitive	Understand				
CO2	<i>Explain</i> the types conditioning the si and their application	gnal and actuators	Cognitive	Ar	nders nalyz oply		d,	
CO3	Explain, the micromachining tools Cognitive for nano systems						d	
CO4	<i>Describe</i> and <i>Disc</i> their measurement		Cognitive	Analyze Understan Analyze, Apply			d,	
UNIT I	Transducer Basic	S			6=1	2		
signals. Fun systems UNIT II	ctional specification	ns of sensors: static	celeration-flow-volume-temp and dynamic characteristics o	f me	easu 6=1	rem 2		
conditioning carrier-elect grounding. I applications	g: Wheatstone bridge rostatic shields-phase Nano sensors and ty	e-AC bridges. Ampli se sensitive detectors pes. Actuator; Defini	tance type-electromagnetic ty fiers: AC – instrumentation-is -induction type and reduction ition, components, design goa	shie shie ls, ty	ion- ld pes	&		
	0	tools for nano syste			6=1			
micro mach manipulatio tribology, co	ined nano devices,	Micro systems for molecule, AFM: I	p approaches, Micro- and na single-molecule handling and maging from DNA to cell	1 ma	odifi	cati	on,	
UNIT IV	Sensors and Meas				6=1	2		
biosensor.			rimers: Synthesis, Chemical s composition and applications		r,			
	nes as tools for Nan	otechnology, H. Fuji	ta (Ed.), Springer Internationa	ıl Ed	litio	n,		
Nanomateria 2008	als Chemistry, Edite	d by C.N.R. Rao, A.	Muller and A.K. Cheetham,	Wile	y-V	CH,		

REFE	RENCES				
1. Davi	d J. Griffiths, Intr	roduction to Quar	ntum Mechanics	(Cambridge Univ	ersity Press India;
2/ed ed	ition, 2016).				
2. L. S	Nano composites	, edited by Challa	a Kumar, Wiley-	VCH Publications	, Nanotechnology
for the	Life Sciences Ser	ries, Vol 8, 2010.			
3. Nano	oparticles, Vincer	nt Rotella (Ed.), S	Springer Internati	onal Edition, 2004	1
4. Nano	oscience and Nan	otechnology in E	ngineering, Vija	y K. Vardan, A. Si	vathanu Pillai, D.
Mukhe	rji, M.Dwivedi, L	. Chen, World So	cientific, 2010		
5. Nano	o: The Essentials-	Understanding N	lanoscience and I	Nanotechnology, 7	Г. Pradeep, ТМН,
2010					
e-refer	ences				
	nptel.ac.in/cours				
-	as.ee.ic.ac.uk/peo	*	*		
-	www.slideshare.r				
http://w	ww.egr.msu.edu	/classes/ece480/c	apstone/480-sens	<u>sors.pdf</u>	
	1	L	ABORATORY		
1.		, actuator and pro			
2.		ristics (Photo dio	de/Thermistor/pl	nototransistor)	
3.	Actuator – Step	per motor			
4.	Amplifier chara	cteristics			
5.	Signal Conditio	ning			
6.	Bridge circuit				
7.	Gas sensing (Us	se sensor)			
8.	Colorimetry (Us	se sensor)			
9.	Probe for AFM				
10.	Shape shifting r	anoprobe (Simul	lation)		
REFE	RENCE BOOKS	5			
		LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
		30	0	30	60

Table 1: COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9/10	PSO11/12	PSO1	PSO2	Total
CO1	1	2			2	1							6
CO2	1	2		2	1	2							8
CO3						2		2			1	1	6
CO4						2		2			1	1	6
Total													

1-5 = 1, 6-10 = 2, 11-15 = 3

0-No relation, 1-Low relation, 2-Medium relation, 3- High relation

COURSE	E CODE	XNT605D		L	Т	Р	С		
COURSE	E NAME	NANOROBOTICS		2	0	1	4		
C:P:A		2:0.5:0.5		L	Т	Р	Н		
PREREC	UISITE	Basic Engineering ,		2	0	2	4		
COURSE	E OUTCO	MES	Domain		Lev	vel			
CO1		nd <i>explain</i> the manipulation and	Cognitive	Understand					
	assembly	v of nanorobotics	_	Remember					
			Psychomotor	Applying Guided response					
			Affective	Orga		-	se		
CO2	Understa	and and <i>describe</i> types of	Cognitive	Unde					
	nanoman		coginave	Reme					
			Psychomotor	Appl		-			
			5	Guid		spon	se		
			Affective	Orga					
CO3									
	imaging	systems and its principles		Reme Appl		r			
	Psychomote								
							se		
CO4	Fralain	nanorobotic assembly by CAD and	Affective Cognitive	Organ Unde					
0.04	others	nanorobotic asseniory by CAD and	Cognitive	Reme					
	others		Psychomotor	Appl		1			
			5	Guid		spon	se		
			Affective	Orga					
CO5		and and explain applictaions of	Cognitive	Unde					
	nanorobo	ot.		Reme		r			
			Psychomotor	Applying Guided response					
			Affactivo			-	se		
UNIT - I		FUATION METHODS FOR NA	Affective NOROBOTIC	Orga 9+6	IIIZIII	g			
		NIPULATION & ASSEMBLY							
manipulat actuation-	n forces ion of Car Optical t	in nanomanipulation-electro kinetic rbon nanotubes, Graphene, Nanoparticle weezers manipulation of Biological d actuators	es & Biological	entities	s-Las	er ba	ased		
UNIT – I	I NAI	NOMANIPULATION		9+6					
effects of	f fluid m ion by Sca nipulation	ased Nano manipulation-theory- Mode edium nanoparticles by Dielectrophon anning probe-Reducing Atomic scale st	retic-Manipulatio	on of	CNT	Γ- N	ano		
UNII - I		7+0							

Art of compressive sensing-compressive sensing based fast imaging system- AFM based imaging – AFM based nanorobotic system enhanced by augmented reality, Hardware & software setup –Experiments on nano manipulation of nanoparticles UNIT – IV 9+6 **CAD & REAL- TIME NANOROBOTIC MANIPULATION & ASSEMBLY** CAD models of nanostructures - Automated manipulation of nanoparticles, nanorods and nanowires -Limitation of Augmented reality system- Real time faultdetection& correction- Real time random drift compensation with local scan-Onlinefault detection & correctionimplementation & experimental results . $\mathbf{UNIT} - \mathbf{V}$ NANOROBOTIC APPLICATIONS 9+6 Wireless capsules endoscopy images & video - Vibration energy harvesting nanoroboticcapsules robot in gastro-intestinal tract - Cooperative control design fornanorobots in drug delivery - cancer targeted therapy using nanorobots. **List of Experiments** 10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility. **TOTAL HOURS** Lecture **Tutorial** Practical Total 0 30 30 60 TEXTBOOK 1. Klaus D. Sattler, "Hand Book of Nanophysics: Nano medicine & Nanorobotics", **CRC Press**, 2010. **REFERENCE and E-REFERENCE** 1. . Mustapha Hamdi, Antoine Ferreira, "Design, Modeling and Characterization of Bio-Nanorobotic Systems", Springer, 2011.
 Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	PO2
CO2	2	1	1	1	-	-	-	-	1			2	1
CO3	2	1	1	1	-	-	-	-	1			2	1
CO4	2	1	1	1	_	_	_	_	1			2	1
CO5	2	1	1	1	_	_	_	_	1			2	1
Total	10	5	5	5	-	-	-	-	5			10	1
	2	1	1	1	-	-	-	-	1			2	5
1-5 →	$1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$												

1- Low relation

2- Medium relation

COUR	SE CODE	XNT605E		L	Т	Р	C		
COUR	SE NAME	NANO OPTICS AND NANOPHOTO	NICS	2	0	1	3		
C:P:A		2:0.5:0.5		L	Т	Р	Н		
	EQUISITE	Physics, Chemistry and Material Scien	nce	2	0	2	4		
COUR	SE OUTCO	OMES	Domain		Lev	vel			
C01	Know and u optics	understand the basics concepts of Nano	Cognitive Psychomotor	Unde Reme Appl Guid	embe ying ed re	er spon	se		
			Affective	Organizing					
CO2	<i>Understand</i> various mat	Cognitive Psychomotor	Unde Reme Appl Guide	embe ying	er	ç۵			
		Affective	Orga		-	50			
CO3	<i>Know</i> and nanpohoton	Cognitive	Unde Reme	rstar	ıd				
		Psychomotor	Appl Guid	ed re	-	se			
			Affective	Organizing Understand					
CO4	Understand	<i>I</i> and <i>Explain</i> the nanophotonic devices	Cognitive Psychomotor	Remember Applying Guided response Organizing					
~~~			Affective						
CO5		<i>I</i> and <i>explain</i> nanobiophotonics and its applications	Cognitive Psychomotor Affective	Unde Reme Appl Guid Orga	embe ying ed re	er spon	se		
UNIT	- I Nar	10 Optics I	Thiceave	orgu		-	9+6		
Introdu resolut	iction - Theo ion and positi sample distan	bretical foundations - Propagation and f tion accuracy - Nanoscale optical micros ace control - Light emission and interaction to Optics II	scopy - Near-fie	eld opt	tical	- Spa prob 1t	atial		
liquid	interfaces-Su	Optical and electron microscopy- Light inface and interfacial tensions- Adsorpt s-micelle formation- Spreading- Monomol	ion and orient	-		-			
UNIT		is of Nano photonics					9+6		
operati		and effective interactions as a base fo photonic devices using optical near fiel elds.	-			-			
UNIT ·		ndamentals of Nano photonic Devices					9+6		

Excitation energy transfer – Device operation: Nano photonic AND gate & Nano photonic OR gate – Interconnection with photonic devices – Room temperature operation. Adiabatic nanofabrication – Nondiabetic nanofabrication: near field optical CVD and near field photolithography – Self assembling method via optical near field interactions – Regulating the size and position of nanoparticles using size dependent resonance – Size controlled, position controlled and separation controlled alignment of nanoparticles.

UNIT – V Fundamentals of Nano-Bio photonics

**9+6** 

Introduction – The cell: scale and constituents – Origin and optical contrast mechanisms – Classical contrast mechanisms: bright field, dark field, phase contrast and interferometric contrast – Fluorescence contrast mechanism – Nonlinear microscopy based on second harmonic generation and coherent anti-Stokes Raman scattering – Reduction of the observation volume – Far field methods: 4Pi microscopy, microscopy on a mirror and stimulated emission depletion – Near field methods.

# List of Experiments

TOTAL HOURS			
Lecture	Tutorial	Practical	Total
30	0	30	75
		•	

## TEXTBOOK

1. Motoi chi Oht su, Ki yoshi Kobayashi, Tadashi Kawazoe, Takashi Yatsui and Makotoaruse, Principles of Nano photonics. New York, USA: CRC Press-Taylor & Francis Group, 2008

# **REFERENCE and E-REFERENCE**

#### 1. NPTEL

2. https://www.photonics.ethz.ch/en/our-range/education/courses/nanooptics.html

#### Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	PO2	PO3	PO4	PO2	1			2	
CO2	2	1	1	1	1	1	1	1	1			2	
CO3	2	1	1	1	1	1	1	1	1			2	
CO4	2	1	1	1	1	1	1	1	1			2	
CO5	2	1	1	1	1	1	1	1	1			2	
Total	10	5	5	5	1	1	1	1	5			10	
	2	1	1	1	5	5	5	5	1			2	

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$ 

COUR	SE CODE	XNT606A		L	Т	Р	С	
COUR	SE NAME	MOLECULAR ARCHITECTURE		2	0	1	3	
C:P:A		2:0.5:0.5		L	Т	Р	Н	
PRER	EQUISITE	Physics, Chemistry and Material Scie	nce	2	0	2	4	
COUR	SE OUTCO	OMES	Domain		Lev	vel		
CO1		e investigation of molecular architecture an, Fluorescence and STM	Cognitive Psychomotor	Unde Reme Appl Guide	embe ying	er	se	
CO2		d and <i>describe</i> the localized plasma	Cognitive	Unde				
	resonance	of metal nanoparticles using NFOI	Psychomotor	Reme Appl Guid	ying		se	
CO3	Understan	Cognitive	Unde Reme					
	using non linear spectroscopy Psychomoto						se	
<b>CO4</b>	<i>Explain</i> the measureme	e molecular dynamics using photon force	Cognitive	Understand Remember				
	measureme		Psychomotor	Applying Guided response				
CO5		d and explain construction of micro pic systems for molecular dynamics	Cognitive	Understand Remember				
	Speen obeor		Psychomotor Affective	Appl Guid	ying		se	
UNIT		man and Fluorescence Spectroscopy Counning Tunneling Microscopy	upled with				6+6	
Fluores	ction-Outlin scence Spect ned with Rat	e of STM Combined with Optical Spectros roscopy - Theoretical Approaches - Experi nan Spectroscopy -STM Combined With I	imental Approac	ches - S	STM	•	ture	
UNIT ·	– II Nea	lasmon				6+6		
Gold N Transm Field T	ction- Near- lanoparticles nission Meth wo-Photon I	sonances in Metal Nanoparticles Field Spectroscopic Method - Fundamenta - Wavefunction Images of Plasmon Mode od - Ultrafast Time-Resolved Near-Field In Excitation Images of Gold Nanorods - Enh ablies and Surface Enhanced Paman Scatte	es of Gold Nanor maging of Gold anced Optical F	rod - N Nanoi	lear- ods-	Field Near	'-	
UNIT -	- III Re	nblies and Surface Enhanced Raman Scatte al Time Monitoring of Molecular Struct id/Liquid Interfaces by Non-Linear Spe	ure at				6+6	

Introduction -Sum Frequency Generation Spectroscopy-Brief Description of SFG-Origin of SFG Process-SFG Spectroscopy-Experimental Arrangement for SFG Measurements-Laser and Detection Systems-Spectroscopic Cells-Dependent Structure of Water at a Pt Electrode/Electrolyte Solution Interface- Photoinduced Surface Dynamics of CO Adsorbed on a Platinum - Interfacial Water Structure at Polyvinyl Alcohol (PVA) Gel/Quartz Interfaces Investigated by SFG Spectroscopy-Introduction-Results and Discussions- Hyper-Raman Spectroscopy-Selection Rules for Hyper-Raman Scattering-Enhancement of Hyper-Raman Scattering Intensity

UNIT – IVDynamic Analysis Using Photon Force Measurement6+6						
Weak Force Measurements-Potential Analysis Method Using Photon Force Measurement-						
Measurement of the Hydrodynamic Interaction Force Acting between. Two Trapped Particles						
Using the Potential Analysis Method-Two-Beam Photon Force Measurement System-Potential						
Analysis Method for Hydrodynamic Force						
Measurement-Trapping Potential Analysis-Kinetic Potential Analysis						
UNIT – VConstruction of Micro-Spectroscopic Systems and their6+6						
<b>Application to the Detection of Molecular Dynamics in</b>						
a Small Domain						
Development of a Near-Infrared 35 fs Laser Microscope -Excitation Source-Detection of Higher						
Order Multiphoton Fluorescence from Organic-Crystals-Multiphoton Fluorescence Imaging with						
the Near-Infrared 35 fs Laser Microscope-Application of Fluorescence Correlation Spectroscopy						

to the Measurement of Local Temperature at a Small Area in Solution-Experimental System of FCS-The Principle of the Method of Measurement of Local Temperature Using FCS-Relaxation Dynamics of Non-Emissive State for Water-Soluble CdTe .Quantum Dots Measured by Using FCS-Samples and Analysis of Experimental Data Obtained with FCS - Non-Emissive Relaxation Dynamics in CdTe Quantum dots

#### List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

Lecture	Tutorial	Practical	Total				
30	0	30	75				
ТЕХТВООК							
1. Molecular Nano D	ynamics by Hiroshi Fuku	ımura, Masahiro Irie					
REFERENCE and E-REFERENCE							

# Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	_	_	_	_	1			2	
CO4	2	1	1	1	_	_	_	_	1			2	
CO5	2	1	1	1	-	-	-	-	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	-	1			2	
1-5 →	1, 6-1	0 →	2, 1	1-15 -	→3	•			•			•	

0 - No relation 1- Low relation 2- Medium relation 3- High relation

COUR	SE CODE	XNT606B		L	Т	Р	С		
COUR	SE NAME	NANOBIOPHOTONICS FOR BIOTECHNOLOGY AND NANOM	NANOBIOPHOTONICS FOR BIOTECHNOLOGY AND NANOMEDICINE						
C:P:A		2:0.5:0.5		L	Т	Р	H		
PRER	EQUISITE	ence	2	0	2	4			
COUR	Level								
C01		xplain basic concepts of nano	Cognitive	Unde					
		th biological molecules		Remember		er			
			Psychomotor	Applying Guided response					
		Affective	Orga		-	~ -			
CO2	Understand	and <i>describe</i> Second-Harmonic	Cognitive	Unde		-			
	Generation w	vith nano bio photonics	C	Reme	embe	er			
			Psychomotor	Appl	ying				
				Guided response			se		
~ ~ ~			Affective	Organizing					
CO3		and <i>describe</i> the infrared spectroscopic biological applications	Cognitive	Unde Reme					
			Psychomotor	Applying Guided response					
	Affective					-	se		
<b>CO4</b>	<i>Explain</i> the	basic concepts of plasmonics and	Cognitive		Organizing Understand				
001		on biomedical field	coginare	Reme					
	11		Psychomotor	Appl	ying				
				Guid		spon	se		
			Affective	Organizing					
CO5		and explain the interferometric	Cognitive	Understand					
	techniques an	nd its applications in nanomedicine		Remember					
			Psychomotor	Appl					
			A 66	Guid		-	se		
TINITT	T Norra		Affective	Orga	nızın	-	0.7		
UNIT		o photonics vs bio molecules r Cell, Review of Electromagnetic Fields	Introduction t	o None	nho		<u>9+6</u>		
0	•	Clinical Perspective, Light Scattering in			-	tome	<i>.</i> 3,		
UNIT	– II Th	eory of Second-Harmonic Generation					9+6		
Optical	Low-Coher	Harmonic Generation, Vision Restorati ence Interferometric Techniques for		-					
UNIT	nics and Meta	materials rared Spectroscopic Imaging					9+6		
		ic Imaging: An Integrative Approach to I	Pathology Scatt	ering	Ahse				
		p probes for Coherence Imaging, Second	•••	-			-		
	en-Based Syste			i at at 101		*81118	, 01		
Conage	en-Daseu Syste								

UNIT – IV	Plasmonic		9+6
Plasmonics: To	ward a New Paradigm for Light N	Manipulation at the Nanoscal	e, Plasmon
Resonance Ener	gy Transfer Nano spectroscopy, I	Erythrocyte Nanoscale Flick	ering: A Marker for
Disease			
UNIT – V	Interferometric techniques		9+6
Super resolution	Far-Field Fluorescence Microsc	opy, Optical Low-Coherence	e Interferometric
Techniques for	Applications in Nanomedicine: Ir	ntroduction, Basic Theoretica	al Aspects of Low-
Coherence Inter	ferometry Functional Extensions	of OCT and Other LCI-Base	ed Techniques for
Applications in	Nanomedicine		
List of Experim			
-	riments will be provided relev	ant to the five course out	come based on the
TOTAL HOUI	taught and also feasibility.		
Lecture		Practical	Total
30	0	30	75
TEXTBOOK			
REFERENCE	and E-REFERENCE		
	ww.accessengineeringlibrary.com/l	browse/nanobiophotonics	

# Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	-	-	-	-	1			2	
CO4	2	1	1	1	_	_	_	-	1			2	
CO5	2	1	1	1	_	_	_	-	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	-	1			2	

1-5  $\rightarrow$  1, 6-10  $\rightarrow$  2, 11-15  $\rightarrow$  3

0 - No relation 1- Low relation 2- Medium relation 3- High relation

COURSE	CODE	XNT6	06C		L	Т	Р	С		
COURSE	NAME	Nano	Spintronics		2	0	1	3		
PREREC	UISITES		d Physics		L	Т	Р	Н		
C:P:A	-	1.5:1.2			3	0	2	5		
	COUTCON	1			DOMA		T	EVEL		
CO1			ncept of Introdu	ction to	Cognitive		-	derstand		
	Spintronic				Psychomo	tor		member		
CO2			lerstand Transp	port in magnetic	Cognitive		Un	derstand,		
	materials				Psychomotor			Guided Response		
~~~					~					
CO3	Determin	e and L	escribe Nanom	agnetism	Cognitive		Understand			
					Psychomo	tor		ided		
CO4	Describe	and Illu	strate the Spin	transfer torque	Cognitive		set	derstand,		
0.04	Describe	una 111a	sin are the spin (transfer torque	Psychomo	tor		chanism		
CO5	Classify a	nd Desc	ribe the Spintro	onic Devices	Cognitive		-	derstand,		
	55		1		Psychomo	tor		chanism		
UNIT I	Introduc	ction to S	Spintronics					15		
				ins, Bloch Sphe	re, Spin-orbit	interact	ion,			
			n relaxations in n		, ir		- ,			
UNIT II	Transpo	ort in ma	gnetic materials	5				15		
			-	gneto resistance,	Giant magnet	o resista	ance,			
Magneto r	esistance, Sp	ointronic	materials.	-	_					
UNIT II	[Nano ma	agnetisn	L					15		
				tates in low dimens omain walls in low		netic for	rmulat	tion:		
UNIT IV	Spin tra	nsfer to	que					15		
				spin transfer driv						
	•	•		scattering. Spin i	•		-	injection,		
•		2	· •	ct, Hetero structure	es for spintronic	devices	•			
UNIT V	Spintror							15		
				ing devices (TMR es in proposal. In						
				nods of computing						
	0		LECTURE	TUTORIAL				DTAL		
Н	OURS		45		30			75		
	periments									
	1		1	ant to the five cou	irse outcome b	ased or	the t	faculty		
	ight and als	so feasib	ility.							
TEXT BO Book refe										
REFERE										
		Janomagi	netism. Alberto P	. Guimaraes, Sprir	nger. 2009.					
				Edited by Etienne		T de				
LA	ACHEISSER	RIE, Dam	ien GIGNOUX, l	Michel SCHLENK	ER, Springer, 2	2008.				
	<u> </u>	U		I. D. Coey, Cambr						
4. Int	roduction to	Spintroi	ncs, Supriyo Ban	dyopadhyay and N 121	Aarc Cahay, CR	C press,	, 2008	5.		

Table 1: COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3

0 - No relation 1- Low relation 2- Medium relation

COURSE (CODE	XNT606D	L	Т	Р	С		
COURSE N	NAME	Nanomaterials nanoparticles for	2	0	1	3		
PREREQU	ISITES	Nil	L	Т	Р	H		
C:P:A		2.8:0.8:0.4						
COURSE (DUTCOMES		2 0 2 4 LEVEL					
CO1		ribe the aspects of	DOMAIN Cognitive	Remember			•	
001	••	ry and its features,	Psychomotor	_	rcep			
		lifference between			···r			
	01	niconductors and						
	Insulators.							
CO2	Explain the fundation	mental principles	Cognitive	Un	ders	stan	ł	
	and different route	s of synthesis of	Psychomotor	Se	t			
	various nanopartic							
CO3	-	us characterization	Cognitive		ply			
	techniques, use an		Psychomotor Affective		echa		n	
	nanomaterials synt			Re	ceiv	e		
<u> </u>	help of these techn	<u>.</u>		Remember				
CO4	Describe, Illustrat		Cognitive				•	
	Photo catalytic me		A ffe ative		alys			
CO5	pathways & kineti		Affective Cognitive	Respond				
005		sure the different nomaterials for	Cognitive	Remember Apply				
	detoxification of a							
UNIT I		N TO NANOMATI		6 +	echa 6	11151	.1	
			he beginning, Introductory A	-	-	f F	ree	
			bands and its variation with en					
			ductors. Effect of crystal size					
chemical an	d optical properties	of nanoparticles – El	lectronic structure of nanoparti	cles	_	-		
UNIT II	CHEMICAL I	ROUTES FOR	SYNTHESIS OF	6+	6			
	NANOMATERIAI							
		_	ess, Electro-Deposition, Plasm					
			e powders. Chemical precipita		and	co-		
			oemulsions or reverse micelle					
	•	•	vave heating synthesis; Sonocl			• 1		
.1 . 5	synthesis; Electrochemical synthesis; Photochemical synthesis, Synthesis in superc							
UNIT III	CHARACTERIZ	ATION TECHNIQ	UES	6+	6			
UNIT III Application	CHARACTERIZ of General Character	ATION TECHNIQ		6+	6	ctar	nce	
UNIT III Application Spectroscop	CHARACTERIZ of General Charactery,	ATION TECHNIQ erization Techniques	UES UV – Vis- NIR - absorption a	6 +	6 refle			
UNIT III Application Spectroscop X- Ray D	CHARACTERIZ of General Charactery, Diffraction studies	ATION TECHNIQ erization Techniques – Bragg's law -	UES UV – Vis- NIR - absorption a – particle size – Scherer's	6+ and a	<mark>6</mark> refle quat	ion	_	
UNIT III Application Spectroscop X- Ray D Photolumin	CHARACTERIZ of General Charactery, Diffraction studies escence (PL) studies	ATION TECHNIQ erization Techniques – Bragg's law - s Fourier Transform	UES UV – Vis- NIR - absorption a – particle size – Scherer's Infrared Spectroscopy (FTIR	6+ and 1 s e) - 1	6 refle quat FT 1	ion Ram	_ nan	
UNIT III Application Spectroscop X- Ray D Photolumin studies –Su	CHARACTERIZ of General Charactery, Diffraction studies escence (PL) studies rface Enhanced Infra	ATION TECHNIQ erization Techniques – Bragg's law - s Fourier Transform	UES UV – Vis- NIR - absorption a – particle size – Scherer's	6+ and 1 s e) - 1	6 refle quat FT 1	ion Ram	_ nan	
UNIT III Application Spectroscop X- Ray D Photolumin studies –Sur and AFM to	CHARACTERIZ of General Charactery, Diffraction studies escence (PL) studies rface Enhanced Infra o nanotechnology	ATION TECHNIQ erization Techniques – Bragg's law - s Fourier Transform ared spectroscopy, R	UES UV – Vis- NIR - absorption a – particle size – Scherer's Infrared Spectroscopy (FTIR desonance Raman Spectroscopy	6+ and 1 s e) - 1 y -S	6 refle quat FT 1 EM	ion Ram	_ nan	
UNIT III Application Spectroscop X- Ray E Photolumine studies –Sur and AFM to UNIT IV	CHARACTERIZ of General Charactery, Diffraction studies escence (PL) studies rface Enhanced Infra nanotechnology ITRODUCTION	ATION TECHNIQ erization Techniques – Bragg's law - s Fourier Transform ared spectroscopy, R TO HETEROGEN	UES UV – Vis- NIR - absorption a – particle size – Scherer's Infrared Spectroscopy (FTIR esonance Raman Spectroscop) OUS PHOTOCATALYSIS	6+ and 1 s e) - 3 y -S 6+	6 refle quat FT 1 EM 6	ion Ram , TE	_ nan	
UNIT III Application Spectroscop X- Ray D Photolumine studies –Sur and AFM to UNIT IV Introduction	CHARACTERIZ of General Charactery, Diffraction studies escence (PL) studies rface Enhanced Infra nanotechnology ITRODUCTION	ATION TECHNIQ erization Techniques – Bragg's law - s Fourier Transform ared spectroscopy, R TO HETEROGEN hotocatalysis, Photo	UES UV – Vis- NIR - absorption a – particle size – Scherer's Infrared Spectroscopy (FTIR Lesonance Raman Spectroscopy OUS PHOTOCATALYSIS catalytic mechanism, general p	6+ and the second se	6 refle FT 1 EM 6 way	ion Ram , TE s &	_ nan	
UNIT III Application Spectroscop X- Ray D Photolumin studies –Sur and AFM to UNIT IV Introduction kinetics, Ae	CHARACTERIZ of General Charactery, Diffraction studies escence (PL) studies rface Enhanced Infra- o nanotechnology ITRODUCTION to heterogeneous p robic oxidation proc	ATION TECHNIQ erization Techniques – Bragg's law - s Fourier Transform ared spectroscopy, R TO HETEROGEN hotocatalysis, Photo	UES UV – Vis- NIR - absorption a – particle size – Scherer's Infrared Spectroscopy (FTIR desonance Raman Spectroscopy OUS PHOTOCATALYSIS catalytic mechanism, general p tocatalytic activity, Reaction v	6+ and the second se	6 refle FT 1 EM 6 way	ion Ram , TE s &	_ nan	

Introduction to nature and cause of toxicity in air and water, Mechanism of detoxification of air/ water by nanostructured catalysts; TiO_2 as a semiconductor photocatalyst; TiO_2 nanoparticles as benchmark catalyst for water purification:, Detoxification of air using nanocrystalline TiO_2 , Treatment of wastewater/ air using nanoparticles such as CeO₂, ZnO, Nb₂O₅, Ta₂O₅ and other metal oxides

TEXT

1. V. Pokropivny, R. Lohmus, I. Hussainova A. Pokropivny and S. Vlassov "Introduction to nanomaterials and nanotechnology" Tartu University, Tallinn University, Frantsevich Institute for Problems of Materials Science of NASU.

2.Marcel Lahmani, Catherine Br'echignac and Philippe Houdy "Nanomaterials and Nanochemistry", Springer.

3.U. Heiz and U. Landman, "Nanocatalysis" Springer, 2006

4.Y. Gogotsi "Nanomaterials" Taylor and Francis, 2006

REFERENCES

1. K.W. Kolasinski, "Surface Science: Foundations of Catalysis and Nanoscience", Wiley, 2002.

2. G. Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, 2004.

3. Joel I. Gersten, "The Physics and Chemistry of Materials", Wiley, 2001.

4. A. S. Edelstein and R. C. Cammarata, "Nanomaterials: Synthesis, Properties and Applications", Institute of Physics Pub., 1998.

5. S.Yang and P.Shen: "Physics and Chemistry of Nanostructured Materials", Taylor & Francis, 2000.

6. G.A. Ozin and A.C. Arsenault, "Nanochemistry: Achemical approach to nanomaterials", Royal Society of Chemistry, 2005.

7. Physical Chemistry – Atkins Peter, Paula Julio

8. Simon Parsons, Advanced oxidation processes for water and wastewater treatment, IWA Publishing, 2004.

9. Thomas Oppenländer, Photochemical Purification of Water and Air: Advanced Oxidation Processes (AOPs): Principles, Reaction Mechanisms, Reactor Concepts, Wiley-VCH Publishing, Published by, 2003.

10. Vincenzo Belgiorno, Vincenzo Naddeo and Luigi Rizzo, Water, wastewater and soil treatment by Advanced Oxidation Processes (AOP), Lulu Enterprises, 2011.

11. Harold J.Ratson, Odor and VOC control handbook, Newyork, Mcgraw-hill, 1998.

E Resources - MOOCs:

- 1. http://www.mooc-list.com/course/nanochemistry-minor-saylororg
- 2. https://www.canvas.net/courses/exploring-nanochemistry
- 3. http://freevideolectures.com/Course/2263/Nanotechnology-I
- 4. http://freevideolectures.com/Course/3001/Nanotechnolgy-I
- 5. http://freevideolectures.com/Course/3167/Advanced catalysis-II
- 6. <u>http://ocw.mit.edu/courses/nanochemistry</u>

	LABORATORY
1.	Synthesis of zirconium oxide nanomaterials
2.	Synthesis of cerium oxide nanomaterials
3.	Synthesis of niobium pentaoxide nanomaterials

4.	Synthesis of vanadium oxide nanomaterials
5.	Characterization of zirconium oxide nanomaterials using XRD, SEM, XPS, UV-Vis NIR
6.	Characterization of cerium oxide nanomaterials using XRD, SEM, XPS, UV-Vis NIR.
7.	Characterization of niobium pentaoxide nanomaterials using XRD, SEM, XPS, UV- Vis NIR
8.	Characterization of vanadium oxide nanomaterials using XRD, SEM, XPS, UV-Vis NIR
9.	Determination of photocatalytic efficiency of cerium oxide nanoparticles demonstrated by degradation of Methylene blue/ Rhodamine B dye
10.	Determination of photocatalytic efficiency of niobium pentaoxide nanoparticles demonstrated by degradation of Methylene blue/ Rhodamine B dye
11.	Determination of photocatalytic efficiency of vanadium oxide nanoparticles demonstrated by degradation of Methylene blue/ Rhodamine B dye
REFE	RENCE BOOKS
Press 2. W.G	Gaponenko, Optical Properties of semiconductor nanocrystals, Cambridge University s, 1980. addand, D.Brenner, S.Lysherski and G.J.Infrate(Eds.), Handbook of NanoScience, Engg. Fechnology, CRC Press, 2002.
3. K. B	arriham, D.D. Vvedensky, Low dimensional semiconductor structures: fundamental and ce applications, Cambridge University Press, 2001.
4. G. C	ao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial ege Press, 2004.
J.Georg	ge, Preparation of Thin Films, Marcel Dekker, Inc., New York. 2005
1.http://	urces - MOOCs: /freevideolectures.com/Course/2380/NanoChemistry-LaboratoryTechniques

2. <u>http://freevideolectures.com/Course/2941/Chemistry-1A-General-Nanotechnology-Fall-2011</u> 3. http://ocw.mit.edu/courses/chemistry/5-30/Nanotechnology-laboratory-techniques 3

LECTURE	TUTORIAL	PRACTICAL	TOTAL HOURS
30	0	30	60

Table 1: Mapping of CO's with PO's

	PO	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	3	3	3	1	2	3	1	3	1	1	2	1
CO2	3	2	3	3	3	2	3	3	1	3		1	2	1
CO3	3	3	3	3	3	1	3	3	1	2	1	1	2	2
CO4	3		3	3	3	3	3	3	1	1		1	3	2
CO5	1	3		2	2	1	2		1	1		1	2	2
Total	13	11	12	14	14	8	13	12	5	10	2	5	11	8
Scaled Value	3	3	3	3	3	2	3	3	1	2	1	1	1	2

 $1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3$

0-No Relation, 1- Low Relation, 2-Medium Relation, 3-High Relation

C:P:A 1.5:1.5:0 0 0 2* 2 COURSE OUTCOMES Domain Level C01 Identify the features and types of paragraph writing. Cognitive Remember C02 Comprehends the meaning and principles of discourse Cognitive Understand C03 Adapts themuances of language used in various types of essays Psychomotor Set C04 Constructs novel ideas creatively and competence in writing Psychomotor Origination UNIT I Introduction Introduction Introduction Introduction UNIT II Discourse features Introduction Introduction Introduction UNIT II Discourse features Introduction Introduction Introduction Introduction UNIT II Discourse features Introduction In	COURSE	CODE	XGS6)7			L	Т	Р	С
C:P:A 1.5:1.5:0 0 0 2* 2 COURSE OUTCOMES Domain Level C01 Identify the features and types of paragraph writing. Cognitive Remember C02 Comprehends the meaning and principles of discourse Cognitive Understand C03 Adapts thenuances of language used in various types of essays Psychomotor Set C04 Constructs novel ideas creatively and competence in writing Psychomotor Origination UNIT I Introduction Psychomotor Origination Definition of a paragraph - writing different types of paragraphs: descriptive paragraph-comparison and contrast paragraph UNIT II Discourse features Discursive – argumentative – cause & effect – chronological – language used in essays accordite the types of essays UNIT IV Writing UNIT IV Writing ILECTURE TUTORIAL PRACTICAL TOTAL 0 0 30 30 30 TEXT BOOKS Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills.Cambridge University Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E - REFERENCES	COURSE	NAME	ACAD	EMIC WRITI	NG SKILLS		0	0	2	0
COURSE OUTCOMES Domain Level CO1 Identify the features and types of paragraph writing. Cognitive Remember CO2 Comprehends the meaning and principles of discourse Cognitive Understand CO3 Adapts thenuances of language used in various types of essays Psychomotor Set CO4 Constructs novel ideas creatively and competence in writing Psychomotor Origination UNIT I Introduction Definition of a paragraph - writing different types of paragraphs: descriptive paragraph-proce paragraph-comparison and contrast paragraph UNIT II Discourse features Cohesion – Coherence (connectives) – précis writing – summarizing UNIT II Types of Essays UNIT II Discursive – argumentative – cause & effect – chronological – language used in essays accordi to the types of essays UNIT IV Writing Components of Good Essay - Essay writing practice IECTURE TUTORIAL PRACTICAL TOTAL 0 0 0 30 30 TEXT BOOKS Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing <i>Skills</i> .Cambridge University Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E – REFERENCES IECTURE IECTURE	PREREQU	UISITE:	Nil				L	Т	Р	Н
CO1 Identify the features and types of paragraph writing. Cognitive Remember CO2 Comprehends the meaning and principles of discourse Cognitive Understand CO3 Adapts thenuances of language used in various types of essays Psychomotor Set CO4 Constructs novel ideas creatively and competence in writing Psychomotor Origination UNIT I Introduction Introduction Origination Origination Definition of a paragraph - writing different types of paragraphs: descriptive paragraph-proce paragraph-comparison and contrast paragraph VNIT II Discourse features Image: Cohesion - Coherence (connectives) - précis writing - summarizing VNIT II Types of Essays Image: Cohesion - Coherence (connectives) - précis writing - summarizing VNIT II UNIT II Types of Essays Image: Cohesion - Coherence (connectives) - précis writing - summarizing Image: Cohesion - Coherence (connectives) - précis writing - summarizing Image: Cohesion - Coherence (connectives) - précis writing - summarizing Image: Cohesion - Coherence (connectives) - précis writing - summarizing Image: Cohesion - Coherence (connectives) - précis writing - summarizing Image: Cohesion - Coherence (connectives) - précis writing - summarizing Image: Cohesion - Coherence (connectives) - précis writing - summarizing Image: Cohesion - Coherence (connechesic - cheronological - language used in essays accord	C:P:A		1.5:1.5	:0			0	0	2*	2
writing. Origination CO2 Comprehends the meaning and principles of discourse Cognitive Understand CO3 Adapts thenuances of language used in various types of essays Psychomotor Set CO4 Constructs novel ideas creatively and competence in writing Psychomotor Origination UNIT I Introduction Introduction Definition of a paragraph - writing different types of paragraphs: descriptive paragraph-proceparagraph-comparison and contrast paragraph UNIT II Discourse features Cohesion – Coherence (connectives) – précis writing – summarizing UNIT III Types of Essays Image: Component of Good Essay - Essay writing practice UNIT IV Writing Image: Components of Good Essay - Essay writing practice Image: Component of Good Essay - Essay writing practice Components of Good Essay - Essay writing practice Image: Component of Good Essay - Essay writing practice Image: Component of Good Essay - Essay writing practice Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills. Cambridge University Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E – REFERENCES Edition, 2010 E E	COURSE	OUTCO	MES			Domain		Le	vel	
discourse Image: CO3 Adapts thenuances of language used in various types of essays Psychomotor Set CO4 Constructs novel ideas creatively and competence in writing Psychomotor Origination UNIT I Introduction Psychomotor Origination Definition of a paragraph - writing different types of paragraphs: descriptive paragraph-proceparagraph-comparison and contrast paragraph UNIT II Discourse features UNIT II Discourse features Image: Coherence (connectives) – précis writing – summarizing Image: Coherence (connectives) – précis writing – summarizing UNIT III Types of Essays Image: Coherence (connectives) – précis writing – summarizing Image: Coherence (connectives) – précis writing – summarizing UNIT IV Writing Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice VITT IV Writing Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills.Cambridge University Press 2012 Image: Components of Coherence (Connectives) Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT	CO1							Re	memb	er
types of essays P CO4 Constructs novel ideas creatively and competence in writing Psychomotor Origination UNIT I Introduction Psychomotor Origination Definition of a paragraph - writing different types of paragraphs: descriptive paragraph-proce paragraph-comparison and contrast paragraph One of paragraphs: descriptive paragraph-proce UNIT II Discourse features Image: Coherence (connectives) – précis writing – summarizing Image: Coherence (connectives) – précis writing – summarizing UNIT III Types of Essays Image: Coherence (connectives) – précis writing – summarizing Image: Coherence (connectives) – précis writing – summarizing UNIT III Types of Essays Image: Coherence (connectives) – précis writing – summarizing Image: Coherence (connectives) – précis writing – summarizing UNIT IV Writing Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Coherence (coherence (coherenc (coherence (coherence (coherenc (coherence (c	CO2									ınd
in writing in writing UNIT I Introduction Definition of a paragraph - writing different types of paragraphs: descriptive paragraph-proceparagraph-comparison and contrast paragraph UNIT II Discourse features UNIT II Discourse features Cohesion - Coherence (connectives) - précis writing - summarizing UNIT III Types of Essays Discursive - argumentative - cause & effect - chronological - language used in essays accordit to the types of essays UNIT IV Writing Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice VITT IV Writing Components of Good Essay - Essay writing practice Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills.Cambridge University Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E - REFERENCES	CO3	-		ces of language	used in various	Psychomo	tor	Set		
Definition of a paragraph - writing different types of paragraphs: descriptive paragraph-proceparagraph-comparison and contrast paragraph UNIT II Discourse features Cohesion - Coherence (connectives) - précis writing - summarizing UNIT III Types of Essays Discursive - argumentative - cause & effect - chronological - language used in essays accordit to the types of essays UNIT IV Writing Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Components of Good Essay - Essay writing practice Image: Component of Good Essay - Essay writing practice Image: Component of Good Essay - Essay writing practice Image: Component of	CO4			el ideas creative	ly and competence	e Psychomotor Originatio				
paragraph-comparison and contrast paragraph UNIT II Discourse features Cohesion – Coherence (connectives) – précis writing – summarizing UNIT III Types of Essays Discursive – argumentative – cause & effect – chronological – language used in essays accordit to the types of essays UNIT IV Writing Components of Good Essay - Essay writing practice LECTURE TUTORIAL PRACTICAL TOTAL 0 0 30 30 TEXT BOOKS Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills. Cambridge University Press 2012 Dataley S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E – REFERENCES	UNIT I	Introdu	iction							
Cohesion – Coherence (connectives) – précis writing – summarizing UNIT III Types of Essays Discursive – argumentative – cause & effect – chronological – language used in essays accordit to the types of essays UNIT IV Writing Components of Good Essay - Essay writing practice Image: LECTURE TUTORIAL PRACTICAL TOTAL 0 0 30 30 30 30 Skills.Cambridge University Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E-REFERENCES	paragraph-o	compariso	on and co	ontrast paragrap		is: descriptiv	ve pa	ragra	iph-pi	
UNIT IIITypes of EssaysDiscursive – argumentative – cause & effect – chronological – language used in essays accordit to the types of essaysUNIT IVWritingComponents of Good Essay - Essay writing practiceLECTURETUTORIALPRACTICALTOTAL0030Stills.Cambridge University Press 2012Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills.Cambridge University Press 2012PBailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010E - REFERENCES										
Discursive – argumentative – cause & effect – chronological – language used in essays accordit to the types of essays UNIT IV Writing Components of Good Essay - Essay writing practice Function - Essay - Essay writing practice Components of Good Essay - Essay writing practice Components of Good Essay - Essay writing practice Function - Essay - Essay writing practice Components of Good Essay - Essay writing practice Function - Essay - Essay writing practice Components of Good Essay - Essay writing practice Function - Essay - Essay writing practice Components of Good Essay - Essay writing practice Components of Good Essay - Essay writing practice Function - Essay - Essay - Essay writing practice Components of Good Essay - Essay writing practice Function - Essay - Essa					s writing – summariz	zing				1
to the types of essays UNIT IV Writing Components of Good Essay - Essay writing practice UECTURE TUTORIAL PRACTICAL TOTAL 0 0 0 30 30 TEXT BOOKS Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills.Cambridge University Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E – REFERENCES	UNIT III	Types of	of Essay	S						
Components of Good Essay - Essay writing practice LECTURE TUTORIAL PRACTICAL TOTAL 0 0 30 30 TEXT BOOKS Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills. Cambridge University Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E – REFERENCES		-		- cause & effect	– chronological – la	anguage used	l in e	essay	s acco	ordin
LECTURE TUTORIAL PRACTICAL TOTAL 0 0 30 30 TEXT BOOKS Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills.Cambridge University Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E – REFERENCES	UNIT IV	Writing	7							1
003030TEXT BOOKSPeter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills.Cambridge University Press 2012PBailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010E – REFERENCES	Componen	ts of Good	l Essay -	- Essay writing	practice					
TEXT BOOKS Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills.Cambridge University Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E – REFERENCES							CAL		-	
 Peter Chin, Yusa Koizumi, Samuel Reid, Sean Wray, Yoko Yamazaki. Academic Writing Skills.Cambridge University Press 2012 Bailey S.ACADEMIC WRITING : A PRACTICAL GUIDE FOR STUDENT (ROUTLEDGE STUDY GUIDES) 01 Edition, 2010 E – REFERENCES)		
STUDY GUIDES) 01 Edition, 2010 E – REFERENCES	Peter Chin,	Yusa Ko			an Wray, Yoko Yam	azaki. Acade	emic	Writ	ing	
	•				ICAL GUIDE FOR S	STUDENT (I	ROU	TLE	DGE	
• http://www.worc.ac.uk/movingon/Academic%20writing.pdf	E – REFE	RENCES								
 http://www.wore.ac.dk/movingon/readenice/s2owriting.pdf https://www.academiccoachingandwriting.org/academic-writing/resources/good- 										

<u>https://www.academiccoachingandwriting.org/academic-writing/resources/good-academic-writing</u>

SYLLABUS

SEMESTER - VII

COURSE (L	Т	Р	C		
COURSE N	NAME	CYBER SECURITY	3	0	0	3	
C:P:A		2:0.5:0.5		L	Т	P	Н
PREREQU	EREQUISITE Physics, Chemistry and Material Science					0	3
COURSE (DUTCON	AES	Domain		Lev	vel	
CO1	understand Reg	Unde Reme					
CO2	Concept		Cognitive	Unde Reme			
CO3	<i>underst</i> welfare	and the Cyber Crime and Cyber	Cognitive	Unde Reme			
CO4		on issues related to Information Concepts	Cognitive	Unde Reme			
CO5		and various security threats	Cognitive	Unde Reme			
UNIT - I	INTRO	DUCTION					Ģ
UNIT – II	CYBE	R SECURITY OBJECTIVES AND (GUIDANCE				ļ
Frameworks Security Pol Project– Cy	s – E Con licy Objec ber Secur	cs – Security Management Goals – Counterce Systems – Industrial Control Systems – Guidance for Decision Makers ity Management – Arriving at Goals – Control Security Paragement	vstems – Personal – Tone at the To Cyber Security D	l Mobil p – Pol locume	le De licy a	evices is a	
		h – Catalog Format – Cyber Security P					(
Trademarks Appropriate	ernance Is – Email a Use – Cy	R SECURITY POLICY CATALOG sues – Net Neutrality – Internet Names and Messaging - Cyber User Issues - M /ber Crime – Geo location – Privacy - G er Espionage – Cyber Sabotage – Cybe	and Numbers – (lalvertising - Imp Cyber Conflict Is	persona	ation	_	
UNIT – IV	INFO	RMATION SECURITY CONCEPTS	5				Ģ
	•	Overview: Background and Current Sc ce Security - Computer Forensics – Ste	• •	f Attac	ks - (Goals	s fo
UNIT – V	SECU	RITY THREATS AND VULNERAB	ILITIES				9
Network co	nnections	y threats -Weak / Strong Passwords - Malicious Code - Programming Bug e and Surveillance			-		

List of Experiments 10 to 12 Experiments will be provided r	elevant to the	five course out	come based on t	he faculty				
will be taught and also feasibility.								
Lecture Tutorial Practical Total								
	45	0	0	45				
TEXT BOOK								
1.Jennifer L. Bayuk, J. Healey, P. Rohm	neyer, Marcus	Sachs, Jeffrey	Schmidt, Joseph	n Weiss				
"Cyber Security Policy Guidebook" J	ohn Wiley & S	Sons 2012.						
2. Rick Howard "Cyber Security Essent	ials" Auerbac	h Publications 2	2011.					
3. Richard A. Clarke, Robert Knake "C	yberwar: The 1	Next Threat to 1	National Securit	y & What				
to Do About It" Ecco 2010								
4. Dan Shoemaker Cyber security The E	Essential Body	Of Knowledge	e, 1st ed. Cengag	ge				
Learning 2011								
5. Rhodes-Ousley, Mark, "Information S	Security: The	Complete Refe	rence", Second I	Edition,				
McGraw-Hill, 2013.	•	1						
E RESOURCES								
1. https://www.coursera.org/spec	<mark>ializations/cy</mark>	ber-security						
2. www.nptel.ac.in								

3. http://professional.mit.edu/programs/short-programs/applied-cybersecurity

CO/P O	РО 1	PO 2	РО 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1		1	1	1	1	1	1	1	1			2	
CO2		1	1	1	1	1	1	1	1			2	
CO3		1	1	1	1	1	1	1	1			2	
CO4		1	1	1	1	1	1	1	1			2	
CO5		1	1	1	1	1	1	1	1			2	
Total		5	5	5	5	5	5	5	5			10	
		1	1	1	1	1	1	1	1			2	

Table 1 : COs versus POs mapping

1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3 0 - No relation 1- Low relation

2- Medium relation

COURSE (CODE	XNT702		L	Т	Р	C	
COURSE N	NAME	HEALTH AND SAFETY ISSUES O NANOTECHNOLOGY	F	3	0	0	3	
C:P:A		2:0:1		L	Т	Р	Н	
PREREQU	ISITE	Physics, Chemistry and Material Sci	ence	3	0	0	3	
COURSE (DUTCON	DOMAIN	LEV	EL				
CO1	Relate the human h	he toxic effects of nanotechnology on nealth.	Cognitive	Unde Reme				
			Affective	Appl	у			
CO2	Analyse effects.	Cognitive	Unde Reme					
			Affective	Appl	у			
CO3	Identify	suitable remedial measures	Cognitive	Unde Reme				
			Affective	Apply				
CO4	Suggest environ	Cognitive	Unde Reme	rstar				
			Affective	Apply		1		
CO5	toxicity.	at problems on nanomaterials related to To frame a model policy on	Cognitive	Understand Remember				
	preventi	ng health hazards.	Affective	Apply		<u> </u>		
UNIT - I	Risks of	f Nanomaterials					9	
		rials: Identification of Nano, Specific R d, Risk reduction, Standards, Safety,						
	ment: Ri	sessment sk assessment –Environmental Impact sk Assessment related to nanotechnol						
UNIT - III	Ecotox	icity of nanomaterials					9	
Ecotoxicity Insoluble So	of nanor olids – Bi	naterials: Ecotoxicity - Inhalation depo o –persistence of Inhaled solid material effects of SWCNT		•			e of	
UNIT – IV	2	cicological tests					9	
Ecotoxicolo	gical tes	ts: Terms and parameters frequently ons - ecotoxicological approaches in					:s –	

ecotoxicity measurement for polychlorinated biphenyls - measurement of genotoxicity by Amer
test

UNIT – V	Legal aspe	cts and regulations on t	toxicity of nanomaterials	9						
Legal aspects and regulations on toxicity of nanomaterials: The approaches to assessment of										
exposure	exposure to the nanotechnology. Bioethics and legal aspects of potential health and									
environme	ntal risks in n	anotechnology, FDA reg	ulation, cytotoxicity of nar	oparticles						
List of Ex	periments									
10 to 12 E	xperiments wi	ll be provided relevant to	the five course outcome b	based on the faculty						
will be tau	ght and also fe	easibility.								
TOTAL H	IOURS	-								
Le	cture	Tutorial	Practical	Total						
1	45	0	0	45						
TEXT BO	OK									
1. P.P	. Simeonova,	N. Opopol and M.I. Lust	ter, "Nanotechnology - To	xicological Issues and						
En	vironmental S	afety", Springer 2006.								
2. Vir	od Labhase	etwar and Diandra	L. Leslie, "Biomedica	al Applications of						
nar	otechnology"	, A John Willy & son Inc	c,NJ, USA, 2007 .							
3. Mi	yawaki, J.; et	al Toxicity of Single-W.	Valled Carbon Nanohorns	ACS Nano 2 (213-						
226	226) 2008.									
4. Hutchison, J. E. Green Nanoscience: A Proactive Approach to Advancing Applications										
and Reducing Implications of Nanotechnology. ACS Nano 2, (395–402) 2008.										
5. Mo-Tao Zhu et.al Comparative study of pulmonary responses to nano- and submicron-										
size	sized ferric oxide in rats Toxicology, 21 (102-111) 2008.									
6. Dra	cy J. Gentlen	nan, Nano and Environm	ent: Boon or Bane? Envir	onmental Science and						

technology, 43 (5),P 1239,2009.

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 1	PO1 2	PSO 1	PSO 2
CO1	-	-	I	-	I	-	2	-	1	1	1	1	1
CO2	-	-	-	-	-	-	2	-	1	1	1	1	1
CO3	-	-	-	-	-	-	2	-	1	1	1	1	1
CO4	-	-	-	-	-	-	2	-	1	1	1	1	1
CO5	-	-	-	-	-	-	2	-	1	1	1	1	1
Total							10		5	5	5	5	5
							2		1	1	1	1	1

Table 1 : COs versus POs mapping

1-5 \rightarrow 1, 6-10 \rightarrow 2, 11-15 \rightarrow 3

```
0 - No relation
```

1- Low relation

2- Medium relation

COURSE C	ODE	XNT703		L	Т	Р	C		
COURSE N	AME	NANOCOMPOSITES		3	1	1	5		
C:P:A		2:0.5:0.5		L	Т	Р	Н		
PREREQUI	ISITE	Physics, Chemistry and Material Sci	ence	3	2	2	7		
COURSE O	UTCON	Domain	Leve	l					
CO1	Define	and <i>explain</i> nano ceramics	Cognitive	Unde					
			Psychomotor	Reme		r			
			Appl	-					
				Guid		-	se		
000	T 7 1	· · · · · · · · · · · · · · ·	Affective	Orga					
CO2		<i>tand</i> and <i>describe</i> the fabrication, ies and applications of metal based	Cognitive	Unde					
		Daviahamatan	Reme		r				
	nano co	omposites	Psychomotor	Appl	-	anon			
			Affective	Guide Organ		-	se		
CO3	I ist an	<i>d</i> understand the design of super hard	Cognitive	Unde					
005	materia	0 1	Cognitive	Reme					
	materia		Psychomotor	Appl		4			
				-	spon	se			
			Affective	Guided response Organizing					
CO4	Unders	tand and explain the novel nano	Cognitive	Understand					
	compos	—	C	Remember					
	-		Psychomotor	Appl	ying				
				Guid	ed re	spon	se		
			Affective	Organizing					
CO5		tand and describe the fabrication,	Cognitive	Unde					
	1 1	ies and applications of polymer based		Reme		r			
	nano co	omposites	Psychomotor	Appl	-				
				Guid		-	se		
			Affective	Orga	nizin	g			
UNIT - I		Ceramics					6+6		
		l-Ceramic composites, Different aspects and functionality	of their preparat	tion teo	chnic	luesa	nd		
UNIT – II	Metal	Based Nanocomposites				9+	6+6		
Metal-metal nanocomposites, some simple preparation techniques and their new electricaland magnetic properties									
UNIT - IIIDesign Of Super Hard Materials9+6+									
Super hard na	ano com	posites, its designing and improvements	of mechanical p	ropert	ies.				
UNIT – IVNew Kind Of Nanocomposites9+6+6									
	0	etal nano composites, its designing and							
	1	fractal based nano composites. Core-Sh	ell structured na	no cor	npos				
UNIT - VPolymer Based Nanocomposites9+6+6									
Preparation a	and chara	cterization of diblock Copolymer based	nanocomposites	s; Poly	merc	arbo	n		

nanotubes based composites, their mechanical properties, and industrial possibilities.

List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

TOTAL HOURS

топщиоть			
Lecture	Tutorial	Practical	Total
45	30	30	105

TEXTBOOK

1. Nanocomposites Science and Technology - P. M. Ajayan, L.S. Schadler, P. V. Braun 2006.

REFERENCE and E-REFERENCE

- 1. Physical Properties of Carbon Nanotubes- R. Saito 1998.
- 2. Carbon Nanotubes (Carbon ,Vol 33) M. Endo, S. Iijima, M.S. Dresselhaus 1997.
- 3. The search for novel, superhard materials- Stan Veprjek (Review Article) JVST A, 1999
- 4. Electromagnetic and magnetic properties of multi component metal oxides, hetero
- 5. Nanometer versus micrometer-sized particles-Christian Brosseau, Jamal Ben, Youssef,

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	1
CO2	2	1	1	1	_	_	_	_	1			2	1
CO3	2	1	1	1	-	-	-	-	1			2	1
CO4	2	1	1	1	-	-	-	-	1			2	1
CO5	2	1	1	1	-	-	-	-	1			2	1
Total	10	5	5	5	-	-	-	-	5			10	5
	2	1	1	1	_	_	_	-	1			2	1

Table 1 : COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE C	ODE									
COURSE N	AME	Encapsulation Techniques	2	0	1	3				
PREREQUI	SITES		L	Т	Р	Н				
C:P:A		1.5:1.2:0.3	2	0	2	4				
COURSE O	UTCON	ÆS	DOMA	AIN	L	EVEL				
C01	Techniques Psychomotor Ren									
CO2	Techniques Psychomotor Gu									
CO3 Determine and Describe Nano encapsulation Techniques based on specialized equipments Cognitive Psychomotor Un Gu Se										
CO4Describe and Illustrate the Preparation MethodsCognitiveU										
And Mechanisms Psychomotor M										
CO5Classify and Describe the Application Of Encapsulation TechniqueCognitive PsychomotorUn Un M										
UNIT I Introduction Of Encapsulation Techniques						6+6				
Encapsulation materials-Ac	n mater tive cor	rview of microencapsulation and nano enca ore / shell structure, (matrix core) / sl rials-Selection of encapsulation materia npounds-Objectives of encapsulation te	lls-propertie chniques-G	ore / (r es of Jeneral	natrix encar prino	x shell); osulation ciple of				
Encapsulation materials-Act encapsulation	n mater tive con n technic Five nat	bre / shell structure, (matrix core) / sl rials-Selection of encapsulation materia npounds-Objectives of encapsulation te ue-Classification of nano encapsulation te no encapsulation techniques	lls-propertie chniques-G	ore / (r es of Jeneral	natrix encar prino	x shell); osulation ciple of				
Encapsulation materials-Acc encapsulation up approach; UNIT II Lipid formula by nanolipose Nano encaps caseins- Nat	n mater tive con n technic Five nar Nanoer ation nar omes-En sulation nocapsul	ore / shell structure, (matrix core) / sl rials-Selection of encapsulation materia npounds-Objectives of encapsulation te ue-Classification of nano encapsulation te	echniques-G chniques: T oy nanoemu s rs- Nanoca	ore / (r es of General Yop dow	natrix encap princ n and Encap	x shell); osulation ciple of l bottom <u>6+6</u> osulation ation by				
Encapsulation materials-Act encapsulation up approach; UNIT II Lipid formula by nanolipose Nano encaps caseins- Nan Nanoencapsu	n mater tive con n technic Five nar Nanoe ation nar omes-En sulation nocapsul ilation by Nanoe	bre / shell structure, (matrix core) / sl rials-Selection of encapsulation materia npounds-Objectives of encapsulation techniques- lue-Classification of nano encapsulation techniques ncapsulation techniques-1 noencapsulation techniques-Encapsulation licapsulation by nanostructured lipid carriers techniques based on natural nanocarrie e formation by nanocrystals-nanocapsu y amylase nanostructures ncapsulation Techniques-2	echniques-G chniques: T by nanoemu s rs- Nanoca le formatio	ore / (r es of General Cop dow Ilsions-I apsule	natrix encar princ n and Encar forma cyclo	x shell); psulation ciple of d bottom 6+6 psulation by pdextrin- 6+6				
Encapsulation materials-Act encapsulation up approach; UNIT II Lipid formula by nanolipose Nano encaps caseins- Nat Nanoencapsu UNIT III Nano encaps electro spint nanospray dr Nano encaps individual Nanocapsule Other nan	n mater tive con n technic Five nar Nanoer ation nar omes-En sulation nocapsul lation by Nanoer sulation ning- N yer sulation t biopoly formatic oencapsu	bre / shell structure, (matrix core) / shell rials-Selection of encapsulation materia mpounds-Objectives of encapsulation te- que-Classification of nano encapsulation te- no encapsulation techniques ncapsulation Techniques-1 noencapsulation techniques-Encapsulation by capsulation by nanostructured lipid carriers techniques based on natural nanocarrie e formation by nanocrystals-nanocapsu y amylase nanostructures ncapsulation Techniques-2 technique based on specialized equipme fanocapsule formation by electro spray echniques based on biopolymer nanopartic pon by complexation of biopolymer	echniques-G chniques: T oy nanoemu oy nanoemu ers- Nanoca le formatic ents-Nanoca cles- Nanoca cles- Nanoca	apsule provide the providence of the providence	natrix encap princ n and Encap forma forma forma forma	$\frac{6+6}{6+6}$ ation by odextrin- $\frac{6+6}{6+6}$ ation by ation by ation by ation by ation by				
Encapsulation materials-Act encapsulation up approach; UNIT II Lipid formula by nanolipose Nano encaps caseins- Nan Nano encapsu electro spin nanospray dr Nano encaps electro spin nanospray dr Nano encaps individual Nano encapsu UNIT IV Nano encapsule Other nan nanoencapsule UNIT IV Lipid formula techniques ba	n mater tive con n technic Five nar Nanoer ation nar omes-En sulation nocapsul ilation by Nanoer sulation ning- N yer sulation t biopoly formatic oencapsul lation by Prepar ation nar pased on	bre / shell structure, (matrix core) / shell rials-Selection of encapsulation materia mpounds-Objectives of encapsulation techniques- on encapsulation techniques ncapsulation Techniques-1 moencapsulation techniques-Encapsulation by nanostructured lipid carriers techniques based on natural nanocarrie e formation by nanocrystals-nanocapsu y amylase nanostructures ncapsulation Techniques-2 technique based on specialized equipmer fanocapsule formation by electro spray echniques based on biopolymer nanopartic on by complexation of biopolymer alation techniques- Nanoencapsulation	echniques-G chniques: T by nanoemu oy nanoemu oy nanoemu oy nanoemu ors- Nanoca le formatio ents-Nanoca cles- Nanoca cles- Nanoca cles- Nanoca n by p nechanisms- echanisms- echanisms-	ere / (r es of General Yop dow Ilsions-I apsule on by apsule psule frate protein - Nano Nano	natrix encap princ n and Encap forma cyclo forma forma forma nano na	k shell); psulation ciple of d bottom 6+6 psulation ation by pdextrin- 6+6 ation by tion by ation by particle- notubes- 6+6 psulation				

	Medical application-food and nutraceuticals application-cosmetics application-agricultural applications-pharmaceutical application-electronic applications										
applications-pharmaceutical application-electronic applicationsLECTURETUTORIALPRACTICALTOTAL											
HOURS3003060											
TEX	TEXT BOOK										
1.	Nanoencaps	ulation Techno	logies for the Food and	Nutraceutical Indus	tries edited						
	by Seid Mah	ndi Jafari									
2.	2. Encapsulation Nanotechnologies-edited by Vikas Mittal										
3. Encapsulation technologies for electronic applications- Haleh Ardebili and Michael G.											
	Pecht										
REFI	REFERENCES										

CO/PO PO1 PO2 PO3 PO4 **PO5 PO6 PO7 PO8 PO9** PSO1 PSO2 **CO1 CO2** CO3 **CO4 CO5** Total

Table 1 : COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE CO	ODE	XNT705B		L	Т	Р	С	
COURSE NA	AME	Lithograp	hy techniques	2	0	1	3	
PREREQUI	SITES			L	Т	Р	Н	
C:P:A		1.5:1.2:0.3		2	0	2	4	
COURSE O	UTCOM	IES		DOM	IAIN	LE	VEL	
CO1	Explain	Basic Concep	t Of Micro fabrication	Cognitive Understa Psychomotor Rememb				
CO2 Explain And Understand Photolithography And Cognitive Understand Patterning Of Thin Films Psychomotor Guided Response								
		ne And Desc Optical Litho	e ribe Direct Writing Methods - graphy	Cognit Psycho		Under Guide Set	rstand, ed	
			ate The Electron Beam ay And Ion Beam Lithography	Cognitive Underst				
	••	And <i>Describ</i> Lithography	<i>e The</i> Nanoimprint Lithography	ny Cognitive Unders Psychomotor Mechan				
UNIT I	Introduc	tion And Mic	ro fabrication	6+6				
Lithography -C – resolution ar mask- Phase illumination- C	Photolith Dptical lit ad limits shift mas	tography And hography - dif of photolithog k - Attenuate	I Patterning Of Thin Films Ferent modes - Optical projection raphy – Resolution enhancement ed phase shift masks - alternative etion - Sub resolution assist feature	techniques	s – Phot shift ma	tistage so o mask- asks - O	Binary ff axis	
lithography UNIT III	Direct V	Vriting Moth	ods - Maskless Optical Litho	aranhy		6	+6	
Mask less opti	cal projec	tion lithograp	hy – types, Advantages and Limit e ultraviolet lithography – Light s	ations – red		omponen	nts -	
UNIT IVElectron Beam Lithography (Ebl), X-Ray And Ion Beam Lithography6+6Scanning electron-beam lithography- Electron sources and electron optics system mask less EBI parallel direct-write e-beam systems-electron beam projection lithography - Scattering with angula limitation projection e-beam lithography (SCALPEL) - Projection reduction exposure with variable ax immersion lenses. XRPP - Ion beam lithography-Focusing ion beam lithography - Ion projection lithography.								
UNIT V	Nanoimp	orint Lithogra	phy And Soft Lithography			6	+6	
Nanoimprint LithographyN	lithog Ioulding DipPen	graphy (NI g/Replica mo			n soft	/-NIL- stamps-	Soft Edge	
		LECTURE	TUTORIAL	PRACTI	CAL	тот	AL	

TEXT BOOK

1."Lithographic and Micromachining Techniques for Optical Component Fabrication: II: 2 (Proceedings of SPIE)" by Ernst-Bernhard Kley and Hans Peter Herzig

2."Nanoscale CMOS VLSI Circuits: Design for Manufacturability" by Sandip Kundu and Aswin Sreedhar

3."Organic Nanomaterials: Synthesis, Characterization, and Device Applications" by Tomas Torres and Giovanni Bottari

4."Fabrication Techniques for Micro-Optical Device Arrays" by Ryan D Conk

5."Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices (NanoScience and Technology)" by Yucheng Lan and Zhifeng Ren

6. "Nanomaterials: A Guide to Fabrication and Applications (Devices, Circuits, and Systems)" by Sivashankar Krishnamoorthy

REFERENCES

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	1
CO2	2	1	1	1	-	-	-	-	1			2	1
CO3	2	1	1	1	-	-	-	-	1			2	1
CO4	2	1	1	1	-	-	-	_	1			2	1
CO5	2	1	1	1	-	-	-	-	1			2	1
Total	10	5	5	5	_	_	_	-	5			10	5
	2	1	1	1	-	-	-	-	1			2	1

Table 1 : COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE	CODE	XNT705C	L	Т	Р	С	
COURSE	NAME	Self Assembly Techniques	2	0	1	3	
PREREQU	JISITES	Introduction to Nanotechnology	L	Т	P	Н	
C:P:A		1.5:1.2:0.3	2	0	2	4	
COURSE	OUTCON	1ES	DOMA	AIN	L	EVEL	
CO1	Explain	Basic Concept of Introduction	Cognitive Psychomo	tor		derstand nember	
CO2 Explain and understand Self Assembled Cognitive monolayers techniques Psychomotor							
CO3 Determine and Describe Bottom up method Cognitive Psychomotor 0							
CO4Describe and Illustrate Self assembly technique in printingCognitive Psychomotor							
CO5 Classify and Describe the Biological Application Cognitive Psychomotor Psychomotor							
UNIT I	Introduc	ction				6+6	
Nanostruct	ures: Chen elf organiz	anostructured materials, Growth Mechanis nical, physical and biological self assembly cation of different Nano-morphologies (Qu cubes)	y, Assemblin	ng and p	atter	ning of	
UNIT II	Self Ass	embled monolayers techniques				6+6	
	y - Surface	blayers (SAM), Guided Self Assembly - N Wetting - Electrostatic force; Nanomanip		•			
UNIT III	Bottom	up method				6+6	
Photovoltai	c related c from mol	uring: bottom-up approach, Self-assembly of levices, Langmuir Bladgett films (LB): print lecules to nanoparticles, compression of mo	nciple of for	mation	of m	onolaye	
UNIT IV	Self ass	embly technique in printing				6+6	
monolayers	-applicat	cro contact printing- creating the stamp, s tions, Macroscopic expressions of Natu Janoscale Materials					
UNIT V		cal Application				6+6	
biological s	ystems: S Biologica	ch for Complex Superstructures and Biolog uper hydro phobicity, Self cleaning proper l Nanoscale Materials: Proteins, Lipids, DN	ty, Multi sca	le orde	ring a	ind	

HOURS 30 0 30 60		LECTURE	TUTORIAL	PRACTICAL	TOTAL
	HOURS	30	0	30	60

TEXT BOOK

1. Self-Assembly and Nanotechnology Systems: Design, Characterization, and Applications 1st Edition by Yoon S. Lee.

2. Self-Assembled Nanostructures by Jin Zhang, Zhong-lin Wang, Jun Liu, Shaowei Chen, and Gang-yu Liu.

REFERENCES

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

Table 1 : COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE CO	ODE	XNT705D		L	Т	Р	С		
COURSE N.	AME	NANO IN WIRELESS COMMUNIC	CATION	2	0	1	3		
C:P:A				L T P					
PREREQUI	SITE		-	2 0 2					
COURSE O	UTCON	IES	Domain	n Level					
CO1		\boldsymbol{n} the nanotechnology applications on communication	Cognitive Psychomotor	gnitive Understand					
CO2	nanotec	<i>n</i> and <i>understand</i> applications of chnology on fiber optics and vave communications	Cognitive Psychomotor	Unde Guid			ıse		
CO3 Determine and Describe applications of CNT in telecommunications Cognitive Psychomotor Understand, Guided CO4 CO4 Set									
CO4		<i>be and Illustrate</i> MEMS based tion on wireless communications	Cognitive Psychomotor	ive Understand,					
CO5		xplain and practice the feasible ments on nano wireless communication	Cognitive Psychomotor	Understand,					
UNIT - I	Impact	t of Nanotechnology on Telecommunic	ations				5		
for Telecomm Nanotechnolo	nunicatio ogy: Son ogy - Pre	hot- Global Standards-Impact and Promons- Transparent Transaction: A Scenarione Samples - The Promise and Future of paring Students for Nanotechnology Echnology in Fiber-Optic Telecommu	o- Ongoing Resonant Nanotechnolog	earch a	and	s abo	out 10		
$\mathbf{ONII} = \mathbf{II}$	Microw		incations and				10		
Nanostructur Market Need Fuse: State of Market Requ Limiter Parar Effect Transi	Nanostructures and Their Interaction with Light- Single Nanoparticle- Nanostructure- Nanostructure Construction-Nanostructures as Optical Power-Control Devices- Optical Fuses Market Needs-Optical-Fuse Specifications - for Optical Communication Networks- Optical Fuse: State of the Art - How to Design and Produce a Fuse- Fuse Design and Compliance to Market Requirements- Optical Limiters - The Need -Optical Power Limiter Additional -Power Limiter Parameters-Applications of Graphene at Microwave Frequencies - RF Graphene Field Effect Transistor- Graphene Antenna - Graphene Microstrip Attenuator- Graphene Composite in EM Shielding								
UNIT - III		n Nanotubes in Telecommunications	•				5		
Microwave D and Satellites	Diodes in - Carbo nmunica	n Nanotubes in Fiber-Optics-Telecomm tions and Radio Transmission- CNT as S	unications - Car	bon Na	anotu		for		
UNIT – IV	MEMS	-Based Wireless Communications					10		

RF MEMS - MEMS-Based Inductors-Planar Spiral Inductor- Solenoid-Type Inductor-Toroidal-Meander-Type Inductor -Tunable Inductors - MEMS Variable Capacitor - Tuning of MEMS Variable Capacitor- Electrostatic Actuation- Comb Drive Actuators- RF MEMS Switch -Series Switch - Shunt Capacitive Switch- Electrostatic Actuation of the MEMS Switch -Problems and Solutions- Low Actuation Design-Problem of Stiction and Solutions-Reliability Issues of MEMS Switches - Packaging of RF MEMS -Wafer-Level Packaging- Fabrication of RF MEMS- Surface Micromachining - Bulk Micromachining-LIGA

UNIT – V Lab exercises

20

1. Substrate Integrated Waveguide (SIW) and Modified SIW (MSIW) in CST

- 2. RF MEMS Basic Switch design
- 3. RF MEMS Capacitor and inductor design
- 4. Nano Antenna design in CST

List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

TOTAL HOURS

Lecture	Tutorial	Practical	Total
30	0	20	50
ΤΕΥΤ ΒΟΟΚ			

TEXT BOOK

1. Sohail Anwar, et al., "Nanotechnology for telecommunications", CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

2. Maurizio BOZZI, Luca PIERANTONI, Stefano BELLUCCI, "Applications of Graphene at Microwave Frequencies", RADIOENGINEERING, VOL. 24, NO. 3, SEPTEMBER 2015

3. Parisa Moslemi1, Golamreza Askari, "Application of Nanotechnology in High Frequency and Microwave Devices

REFERENCES:

1. Sohail Anwar, et al., "Nanotechnology for telecommunications", CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

2.Maurizio BOZZI, Luca PIERANTONI, Stefano BELLUCCI, "Applications of Graphene at Microwave Frequencies", RADIOENGINEERING, VOL. 24, NO. 3, SEPTEMBER 2015

3. Parisa Moslemi1, Golamreza Askari, "Application of Nanotechnology in High Frequency and Microwave Devices

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1

Table 1 : CO) s versus	POs map	ping
--------------	-------------------	---------	------

CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5
<u>1-5</u> →	1, 6-10	7 2, 1	1-15	3→							

0 - No relation1- Low relationCOURSE CODEXNT705E

2- Medium relation

3- High relation

					II I CIUUI			
COURSE (CODE	XNT705E	L	Т	Р	С		
COURSE N	NAME	OPTIMIZATION TECHNIQUES	2	0	1	3		
PREREQU	ISITES		L	Т	Р	Н		
C:P:A		1.5:1.2:0.3	2	0	2	4		
COURSE (DUTCOM	ES	DOM	IAIN	LEVEL			
CO1	Explain	Formulate optimization problems	Cognit	ive	Under	rstand		
			Psycho		Reme	mber		
CO2	-	and <i>understand</i> the various types of	Cognit			rstand,		
	functions		Psycho	motor	Guided			
COA					Respo			
CO3		<i>ne and Describe</i> the concept of optimality	Cognit			rstand,		
	cinteria io	r various type of optimization problems	Psycho	motor	Guide set	20		
CO4	Describe	and Illustrate the various constrained and	Cognit	ive	Understand,			
001		ined problems in single variable as well as	Psycho		Mechanism			
	multivaria		1 8 9 4 1 8	1 Sycholitoto Wie				
CO5	••	and <i>Describe the</i> methods of optimization in	0	Cognitive		Understand,		
	real life si	tuation	Psycho	motor	Mechanism			
UNIT I	Introduc	tion and Basic Concepts			15			
		nt; Engineering applications of Optimization						
-		onstraints and Constraint surface; Formulation						
		iming problems; Classification of optimizati	on proble	ems Opti	mizatio	n		
techniques -	- classical	and advanced techniques.						
UNIT II	-	ation Using Calculus			15			
• •		ctions of single and two variables; Global O	-		•			
•		of one and two variables Optimization of fu				ıd		
1		adient vectors; Examples Optimization of fun		-				
		equality constraints; Lagrangian Function						
		bject to equality constraints; Hessian mators; Examples.	IIX IOIII	ulation-	Eigen	values		
UNIT III	-	ariable Optimization Problems	1 .	1 77 1	15	((1 1		
		racketing methods, Region Elimination Method, Golden Section Method, Gradient Based Me			-			
		it Method, Application to Root finding	mous. me	w ton-isaj	puson n	iethoù.		
					15			
UNIT IV Multivariable Optimization Algorithms 15								

Optimality criteria; Unidirectional Search; Direct Search Methods; Hooke-Jeeves pattern search methods; Powell's conjugate Direction Method; Gradient Based Methods; Cauchy's Steepest

Descent met	thod; Ne	wton's method	s; Marquadrat's Methods.		-			
UNIT V Advanced Topics in Optimization								
Piecewise L	inear app	proximation of	a nonlinear function; Multi c	bjective optimizat	ion –			
			s; Multi level optimization Di					
methods; Ev	olutiona		for optimization; Application	s in Nano dimensi	on.			
		LECTURE	TUTORIAL	PRACTICAL	TOTAL			
HOUF		45		30	75			
TEXT BOO)K							
		0 0 1	imization: Theory and Practic	e", New Age Inter	rnational			
,	,	Delhi, 2000.						
			nming", Narosa Publishing He					
		Operations Res	search: An Introduction", 5th	Edition, Macmilla	n, New York,			
1992								
	· •		Engineering Design- Algorith	ms and Examples'	, Prentice-			
		Pvt. Ltd., New						
		0	agesh Kumar, "Multicriterion	• •	U U			
	0		g Pvt. Ltd., New Delhi, India	, ISBN 978-81-20	3-3976			
pp.2	88, 2010	•						
REFEREN	CES							
1. S. S. Rao:	Engineer	ing Optimization	n, New Age International.					
2. E. J. Haug	and J.S.	Arora, Applied	Optimal Design, Wiley, New Yo	ork.				
3. Kalyanmo	y Deb, Oj	ptimization for I	Engineering Design, Prentice Ha	ll of India.				
4. A. Ravind	ran and K	.M. Rogsdeth, C	Optimization G.V. Reklaites, Wi	ley, New York.				

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

Table 1: COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation 1- Low relation

2- Medium relation

COURSE (CODE	XNT706A		L	Т	Р	С		
COURSE N	NAME	MEMS ANI	D NEMS fabrication	2	0	1	3		
PREREQU	JISITES	Nano mater Techniques	ials Fabrication I and II	L	Т	Р	Н		
C:P:A		1.5:1.2:0.3		2	0	2	4		
COURSE (OUTCON	MES		DOM	AIN	L	EVEL		
CO1	Explain	Basic concept	hcept of MEMS and NEMS Cognitive U Psychomotor H						
CO2	Explain	and <i>underst</i>	and Fabrication Process	Cognitive Psychomo		Understand Guided Response			
CO3		ine and Desci 1 MEMS	ribe Mechanical and	Understand Guided Set					
CO4	Describ MEMS	e and Illustra	te the Magnetic and RF	Cognitive Psychomo	otor	Me	Understand, Mechanism		
CO5	Classify fluidic S		the MOEMS and Micro	Cognitive Psychomo			Understand, Mechanism		
UNIT I	Introdu	iction to MEN	AS and NEMS				6+6		
Magnetic MI Architecture UNIT II	EMS, RF M s FABRI	MEMS- Micro f		evices- MEMS	S Archite	ectures	6+6		
Magnetic MI Architecture UNIT II Photolithogr Bulk and sur Modelling el	EMS, RF M s FABRI aphy, struc face micro lements in	MEMS- Micro f CATION PR ctural and sacrif omachining- Wa mechanical, ele	fluidic systems, Bio-Chemo de OCESS Ticial materials- Thin film depo afer bonding and LIGA MEM petrical systems- Basic Modell	evices- MEMS osition- Impuri AS Assemblin ing elements i	Archite ity dopir g and Pa	ng, etc	6+6 6+6 hing ng- Basic		
Magnetic MI Architectures UNIT II Photolithogra Bulk and sur Modelling el thermal syste	EMS, RF M s FABRI aphy, struct face micro lements in ems- Trans	MEMS- Micro f CATION PR ctural and sacrif omachining- Wa mechanical, ele slational and rot	fluidic systems, Bio-Chemo de OCESS Ticial materials- Thin film depo afer bonding and LIGA MEN ectrical systems- Basic Modell ational pure mechanical system	evices- MEMS osition- Impuri AS Assemblin ing elements i	Archite ity dopir g and Pa	ng, etc	6+6 hing ng- Basic s,		
Magnetic MI Architecturez UNIT II Photolithogr Bulk and sur Modelling el thermal syste UNIT III Principles of capacitive ef - MEMS Gyr	EMS, RF M s FABRI aphy, struct face micro lements in ems- Trans Mechar Sensing an fects, pieze roscopes: § rmal actua	MEMS- Micro f CATION PR ctural and sacrif omachining- Wa mechanical, ele slational and rot nical and The nd actuation- Co o element Me	fluidic systems, Bio-Chemo de OCESS Ticial materials- Thin film depo afer bonding and LIGA MEN ectrical systems- Basic Modell ational pure mechanical system rmal MEMS omponents: beam, cantilever, n asurements: strain pressure, flo actuators- Thermal sensors and IEMS relays	evices- MEMS osition- Impur AS Assemblin ing elements i ms micro plates ow- MEMS G	S Archite ity dopir g and Pa n fluid s Compor yroscop	ng, etc ng, etc nckagin ystem nents: es: she	6+6 hing ng- Basic s, 6+6 ear mode-		
Magnetic MI Architectures UNIT II Photolithogra Bulk and sur Modelling el thermal syste UNIT III Principles of capacitive ef - MEMS Gyr devices, The UNIT IV Magnetic m magnetic ser	EMS, RF M s FABRI aphy, struct face micro lements in ems- Trans Mechan fects, pieze roscopes: g rmal actua materials: p nsors and	MEMS- Micro f CATION PR ctural and sacrif machining- Wa mechanical, ele slational and rot nical and The nd actuation- Ce o element Me gripping piezo a tors, Bistable M ic and RF MEI properties- Mag actuators Rev	fluidic systems, Bio-Chemo de OCESS Ticial materials- Thin film depo afer bonding and LIGA MEN ectrical systems- Basic Modell ational pure mechanical system rmal MEMS omponents: beam, cantilever, n asurements: strain pressure, flo actuators- Thermal sensors and IEMS relays	evices- MEMS osition- Impur AS Assemblin ing elements i ms micro plates ow- MEMS G l actuators: the Magneto re- ation system-I	S Archite ity dopir g and Pa n fluid s Compor yroscop ermal ba sistive s - Revie	ng, etc ickagin ystem nents: es: she sics sensor w of	6+6 hing ng- Basic s, 6+6 ear mode- Thermo 6+6 - MEMS RF based		
Magnetic MI Architectures UNIT II Photolithogr: Bulk and sur Modelling el thermal syste UNIT III Principles of capacitive ef - MEMS Gyr devices, The UNIT IV Magnetic m magnetic ser communicati	EMS, RF M s FABRI aphy, struct face micro lements in ems- Trans Mechar Sensing an fects, pieze roscopes: g rmal actua Magneti haterials: p nsors and ion system MOEMS	MEMS- Micro f CATION PR ctural and sacrif omachining- Wa mechanical, ele dational and rot nical and The nd actuation- Ca o element Me gripping piezo a tors, Bistable M ic and RF MEM oroperties- Mag actuators Rev -II RF MEMS S and Micro fl	fluidic systems, Bio-Chemo de OCESS Ticial materials- Thin film depo- afer bonding and LIGA MEM extrical systems- Basic Modelli- ational pure mechanical system rmal MEMS components: beam, cantilever, n asurements: strain pressure, flor actuators- Thermal sensors and IEMS relays MS gnetic materials for MEMS- view of RF based communica 5, varactors, tuner/filter- Resor uidic Systems	evices- MEMS osition- Impuri AS Assemblin ing elements i ms micro plates ow- MEMS G l actuators: the Magneto rea ation system-J nators, Switche	S Archite ity dopir g and Pa n fluid s Compor yroscop ermal ba sistive s [- Revie es, Phase	ectures ng, etc ickagin ystem nents: es: she sics sensor w of 1 e shift	6+6 hing ng- Basic s, 6+6 car mode- Thermo 6+6 - MEMS RF basec er 6+6		
Magnetic MI Architectures UNIT II Photolithogr Bulk and sur Modelling el thermal syste UNIT III Principles of capacitive ef - MEMS Gyr devices, The UNIT IV Magnetic m magnetic ser communicati UNIT V Principles of micro mirro fluids, fluid	EMS, RF M s FABRI aphy, struct face micro lements in ems- Trans Mechan fects, pieze roscopes: g rmal actua ion system MOEM or, digital actuation	CATION PR ctural and sacrif omachining- Wa mechanical, ele dational and rot nical and The nd actuation- Ca o element Me gripping piezo a tors, Bistable W ic and RF MEN oroperties- Mag actuators Rev -II RF MEMS S and Micro fl S technology- micro mirror n methods- Di	fluidic systems, Bio-Chemo de OCESS Ficial materials- Thin film depo- afer bonding and LIGA MEM ectrical systems- Basic Modell ational pure mechanical system mal MEMS components: beam, cantilever, 1 asurements: strain pressure, flor actuators- Thermal sensors and IEMS relays MS gnetic materials for MEMS- view of RF based communica S, varactors, tuner/filter- Resor	evices- MEMS osition- Impur AS Assemblin ing elements i ms micro plates ow- MEMS G l actuators: the Magneto re- ation system-I nators, Switche ators , beam ve guide and	S Archite ity dopir g and Pa n fluid s Compor yroscop ermal ba sistive s - Revie es, Phase splitter tuning-	ag, etc ag, etc ackagin ystem hents: es: she sics sensor w of e shift s- Mi - Prop	6+6 hing ng- Basic s, 6+6 car mode- Thermo 6+6 cro lens, perties of		
Magnetic MI Architectures UNIT II Photolithogr Bulk and sur Modelling el thermal syste UNIT III Principles of capacitive ef - MEMS Gyr devices, The UNIT IV Magnetic m magnetic ser communicati UNIT V Principles of micro mirro fluids, fluid Micro pumj	EMS, RF M s FABRI aphy, struct face micro lements in ems- Trans Mechan fects, pieze roscopes: g rmal actua ion system MOEM of MOEM or, digital actuation ps, Micro	MEMS- Micro f CATION PR ctural and sacrif machining- Wa mechanical, ele clational and rot nical and The nd actuation- Ce o element Me gripping piezo a tors, Bistable M ic and RF MEM ic and RF MEMS S and Micro fl IS technology- micro mirror n methods- Di pumps: design LECTURE	fluidic systems, Bio-Chemo de OCESS Ticial materials- Thin film depo- ater bonding and LIGA MEM extrical systems- Basic Modelli- ational pure mechanical system rmal MEMS omponents: beam, cantilever, n asurements: strain pressure, flor actuators- Thermal sensors and TEMS relays MS gnetic materials for MEMS- view of RF based communication s, varactors, tuner/filter- Resor uidic Systems - Applications Light modul device- Optical switch, wav- lectrophoresis, electro therm n consideration TUTORIAL	evices- MEMS osition- Impur AS Assemblin ing elements i ms micro plates ow- MEMS G l actuators: the Magneto re- ators ystem-1 nators, Switcher ators , beam ve guide and mal flow, the PRACTI	S Archite ity dopir g and Pa n fluid s Compor yroscop ermal ba sistive s (- Revie es, Phase splitter tuning- ermo ca	ang, etc ang, etc ackagin ystem hents: es: she sics sensor w of 1 e shift e shift s- Mi pillar	6+6 hing ng- Basic s, 6+6 car mode- Thermo 6+6 - MEMS RF based er 6+6 cro lens, perties of y effect- DTAL		
Magnetic MI Architectures UNIT II Photolithogr Bulk and sur Modelling el thermal syste UNIT III Principles of capacitive ef - MEMS Gyr devices, The UNIT IV Magnetic m magnetic ser communicati UNIT V Principles of micro mirro fluids, fluid	EMS, RF M s FABRI aphy, struct face micro lements in ems- Trans Mechan Sensing an fects, pieze roscopes: g rmal actua Magneti aterials: p nsors and ion system MOEM or, digital actuation ps, Micro RS	MEMS- Micro f CATION PR ctural and sacrif machining- Wa mechanical, ele slational and rot nical and The nd actuation- Co o element Me gripping piezo a tors, Bistable M ic and RF ME M properties- Mag actuators Rev -II RF MEMS S and Micro fl (S technology- micro mirror n methods- Di pumps: design	fluidic systems, Bio-Chemo de OCESS Ticial materials- Thin film depo- afer bonding and LIGA MEM extrical systems- Basic Modelly ational pure mechanical system rmal MEMS Domponents: beam, cantilever, 11 asurements: strain pressure, flor actuators- Thermal sensors and <u>IEMS relays</u> <u>MS</u> gnetic materials for MEMS- view of RF based communication <u>systems</u> - Applications Light modulidevice- Optical switch, wavilectrophoresis, electro therm a consideration	evices- MEMS osition- Impuri AS Assemblin ing elements i ms micro plates ow- MEMS G l actuators: the Magneto re- ation system-I nators, Switche ators , beam ve guide and mal flow, the	S Archite ity dopir g and Pa n fluid s Compor yroscop ermal ba sistive s (- Revie es, Phase splitter tuning- ermo ca	ang, etc ang, etc ackagin ystem hents: es: she sics sensor w of 1 e shift e shift s- Mi pillar	6+6 hing ng- Basic s, 6+6 ear mode- Thermo 6+6 - MEMS RF based er 6+6 cro lens, perties of y effect-		

1. MEMS and NEMS: Systems, Devices, and Structures-Sergey Edward Lyshevski

2. Modeling MEMS and NEMS-John A. Pelesko, David H. Bernstein

REFERENCES

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5
1-5 → ₁	, 6-10	2, 11	-15	3→							

Table 1 : COs versus POs mapping

0 - No relation

1- Low relation

2- Medium relation

COURSE (CODE	XNT706B		L	Т	P	С	
COURSE N	NAME	Nano Coatin	ngs	2	0	1	3	
PREREQU	USITES	Nanomateri I and II	al Fabrication Techniques	L	Т	Р	Н	
C:P:A		1.5:1.2:0.3		2	0	2	4	
COURSE (OUTCON	MES		DOM	AIN	I	EVEL	
CO1	Explain	the basic con	cepts of coating	Cognitive	-	Understand Remember		
CO2	Explain Techniqu	0	Cognitive Psychomotor					
CO3	Determ	ine And Desc	<i>ribe</i> Hard And Soft Coatings	Cognitive Psychomo		Un	sponse derstand ided t	
CO4	Describ	e And Illustra	tte The Surface Coating	Cognitive Psychomo			derstanc chanisn	
CO5	Classify Techniqu	Cognitive Psychomo			Understand Mechanism			
UNIT I	Concept	t Of Coating					6+6	
Introduction wettability	to surface	Engineering, I	Differences between surface and	d bulk, Prop	erties of	f surfa	ces-wear	
UNIT II	-	Coating Techn	-				6+6	
·	•	ectroplating ,M tional verses na	letallic and non metallic coa	tings, Galva	nizing,a	idvant	ages an	
UNIT III		nd Soft Coatin					6+6	
Caser cladd	ing, laser	alloying, Ele	ctron beam hardening, ion b s, antifriction and anti scratch co		ntation,	electr		
UNIT IV	Surface						6+6	
	Coatings, S	Sol-Gel Coating	s, Radiation-Cured Coatings, M	letal Coating			0.0	
UNIT V	Charact	erization Tech	nique And Application Of Na	nocoating			6+6	
		- Hand finis	hing – Spraying-DIP Nanoo	coating Pro	cess-Na	anoco	ating fo	
liteorogicui	<u> ippiicut</u>	LECTURE	TUTORIAL	PRACTI	CAL	TC	DTAL	
HOUI	RS	30	0	30			60	
List of Lab	Experim	nents						
	ht and als	s will be prov o feasibility.	ided relevant to the five cour	rse outcome	based	on th	e facult	
1. Nanocoat	tings By R	R. Abdel-Karin	n and A. F. Waheed					
2 N	inge & III	tra-Thin Film	s Makhlouf Tiginyanu (Wood	ibaad 2011)				
2.Nanocoati	U	ua-11111111111	s Makilour Tigiliyaliu (WOOC	illeau 2011)				

- 1. Coatings technology handbook marcel dekker, inc., by d. Satash, arthur a. Tracton
- 2. Surface engineering of metals, principles, equipments and technologies tadeusz burakowski, padeusg and weirzxhon,crc press, 1998 kwaadsteniet, marelize botes and j.manuel lopezromero.
- 3. Surface coatings for protection against wear edited by bg miller, woodhead publishing,-2006,caister academic press by t.eugene,michele de
- 4. Nanocoatings: principles and practice destech publications,inc., by steven abbott, nigel holmes
- 5. Nanocoatings and ultra-thin film a.s.h. makhlouf and i. Tiginyanu a volume in woodhead publishing series in metals and surface engineering

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

Table 1 : COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE O	CODE	XNT706C			L	Т	Р	С
COURSE N	NAME	Thin Film			2	0	1	3
PREREQU	ISITES	Nano materia	al Fabrication-	I	Р	Н		
C:P:A		1.5:1.2:0.3			2	0	2	4
COURSE (DUTCON	1ES			DON	IAIN	LE	VEL
			HIN FILM DEP	OSITION	Cogniti			rstand
	· · ·	JES Introduction	L CHARACTERIZ	ATION	Psychon Cogniti		Reme	mber rstand,
		JES Surface anal			Psychol		Guide	ed
		<i>and Describe</i> Al N IN THIN FILM	DSORPTION AI /IS	ND	Cogniti Psychor		Guide Set	
CO4 D	escribe an	d Illustrate the	STRESS IN THI	N FILMS	Cogniti Psychor			rstand, anism
		L Describe the M SAND FILMS	ODIFICATION	OF	Cogniti Psychor			rstand, anism
UNIT I T	HIN FILN	A DEPOSITIO	N TECHNIQUI	ES Introduction			6+6	
UNIT II C Auger Electro Energy Dispe Scanning Ele	HARACT on spectros ersive Ana ctron Micr	scopy – Photoele lysis – Rutherfor coscopy – Transr	ectron Spectrosco d Backscattering nission Electron	Surface analysis ppy – Secondary spectroscopy - I Microscopy – Oj – Photolumineso	Ion Mass maging A ptical ana	Spectros Analysis 7 lysis Tec	Fechniq hniques	ues –
UNIT III A	ADSORP	FION AND DIF	FUSION IN TH	IIN FILMS		-	6+6	
phase transiti diffusion –Gr	tions in ad ain Bound	sorbate layers –	Adsorption kine Thin Film Diffus	es induced by ads tics – Desorption sion Couples - Int	techniqu	es. Funda	amental	s of
		N THIN FILMS					6+6	
polycrystallir	ne films – (Im stress a	Correlation betw	een film stress a	ess in epitaxial fi nd grain structure formula – Methoo	e – Mecha	anisms of	stress	ent –
		ATION OF SU	RFACES AND	FILMS			6+6	
Introduction Laser sources - Ion impla	– Laser and s and Lase ntation ef	d their Interaction r scanning methor fects in solids	ons with Surface	s – Laser modifi alysis of Laser as and structural	nnealing	- Laser s	applica urface a	lloying
			LECTURE	TUTORIAL		CTICAL)TAL
TEXT BOO	HOURS		30	0		30		60
ILAI DUU	IX							
REFERENC	CES							

1. Amy E. Wendt, Thin Films - High density Plasmas, Volume 27, Springer Publishers. (2006).
2Rointan F. Bunshah, Hand Book of Deposition technologies for Thin Films and coatings by Science, Technology and Applications ,Second Edition , Noyes Publications, (1993).
3. Milton Ohring, Materials Science of Thin films Published by Academic Press Limited(1991)
4. L.B. Freund and S.Suresh, Thin Film Materials, (2003).
5. Hans Luth, Solid surfaces, Interfaces and Thin Films' 4 th edition, Springer Publishers (2010).
6. Harald Ibach, Physics of Surfaces and Interfaces, Springer Publishers (2006).AM

Table 1: COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5
	, 6-10	2, 11-	15 3	,→	1					1	

0 - No relation

1- Low relation

2- Medium relation

COURSE CO	ODE	XNT706D		L	Т	Р	С				
COURSE NA	AME	Nano Scaffo Techniques	olds and Characterization	2	0	1	3				
PREREQUI	SITES			L	Т	P	Н				
C:P:A		1.5:1.2:0.3		3	0	2	5				
COURSE O	UTCON	AES		DOMA	AIN	L	EVEL				
CO1	Explai	<i>n</i> Basic Concep	pt of nanoscaffolds	nanoscaffolds Cognitive Psychomotor							
CO2	-	n and unders jues Nano scar	stand Methods and ffolds	Cognitive Psychomo	tor	Gui	derstand, ided sponse				
CO3		nine and Dese ques of Nanos	<i>cribe</i> Characterization scaffolds	Cognitive Psychomo	tor		derstand, ided				
CO4	Descri NanoSo		ate the Application of	Cognitive Psychomo	tor		derstand, chanism				
CO5	Classif scaffol		e the future trends on	Cognitive Psychomo	tor		derstand, chanism				
UNIT I	INTR	DUCTION					15				
	operties	s-physical, me	evelopments, types of nano se chanical, chemical, biologica								
UNIT II			ORMATION				15				
drying, Self-a	ssembly	y, Top-down a	and techniques- electro spinn pproach for tissue engineerin olithography, tissue fabricati	ng, Bottom-u	ip appro	bach f	for tissue				
UNIT III			olithography, tissue fabricati TION TECHNIQUES		nory pro		15				
Photolithogra	phy- ba	ckground, des	ign,3D printed scaffolds, bio ervation, SEM analysis.	printing tec	hnique,	XRE					
UNIT IV		ICATIONS	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,				15				
			engineering, bone re growth gnostic, therapeutic, and cos								
UNIT V			ON SCAFFOLDS	· · ·			15				
		, nerve, skin, ug delivery sy	bone, cartilage, recent resear /stem.	ch on bone i	epair te	chno	logy-				
		LECTURE	TUTORIAL	PRACTI	CAL	TC	DTAL				
HOURS		45		30			75				
	ogy and hattacha		eering: The Scaffold Based A o T. Laurencin.	Approach La	cshmi S	. Nai	r,				

Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 →, 11-15 3→

0 - No relation 1- Low relation 2- Medium relation

SYLLABUS

SEMESTER – VIII

COURSE	CODE	XNT802A		L	Т	Р	С	
COURSE	NAME	Graphene N	lanotechnology	2	0	1	3	
PREREQU	JISITES	Introduction	n to Nanotechnology	L	Т	Р	H	
		Materials S	cience					
C:P:A		1.5:1.2:0.3		2	0	2	4	
COURSE	OUTCON	AES		DOM	IAIN	LE	VEL	
C01		Basic Concept	t of Graphene	Cognit		Understan		
	-	•	•	Psycho	motor	Reme	ember	
CO2	Explain	and <i>underst</i>	tand Properties of graphene	Cognit	ive	Unde	rstand	
				Psycho	motor	Guid	ed	
						Resp		
CO3	Determ	ine and Desci	ribe Synthesis of Graphene	Cognit			rstand	
				Psycho	motor	Guid	ed	
~~~				~ .		Set		
CO4			te the Characterization of	Cognit			rstand	
	Grapher	ne		Psycho	motor	Mech	anism	
CO5	Classify	and <i>Describe</i>	the Application of Graphene	Cognit	ive	Unde	rstand	
	J			Psycho			anism	
UNIT I	Introdu	ction of Graj	ohene			6	6+6	
<b>UNIT II</b> Properties of plasmons and states and	<b>Propert</b> graphene; polaritons, doping (el	ties of graphe Optical: thickne carrier multiplic ectrostatic and	ss dependency, optical conductivity cation. Electrical: Boltzmann equati chemical), quantum hall effect	on, ambipola t, Klein tu	r conduc nneling,	le transport	ensity of	
			al conductivity. Mechanical, Surface	phenomenor	1.			
UNIT III Preparation of		sis of Graphe	ne h of graphene on Silicon carbide, C	hemical den	osition (		6+6	
graphene filr Hummer's n	ns, Chemic nethod, Rec	cally derived graduction of grad	raphene, Synthesis of graphene o bhene oxide: Chemical methods, state carbon sources.	xide: Humn	ner's me	thod, N	Aodified	
UNIT IV	Charac	terization of	Graphene			6	6+6	
Characterizati	ion of graph	nene: Transmissi	on electron microscopy (TEM), Sc			roscopy	(STM)	
Raman Specti	roscopy, Ele	ectrical measuren	nents: electric field effect, temperatur	re dependent	resistivit	y measu	rement.	
UNIT V	Applica	tion of Grap	hene			6	6+6	
Radio-frequei	ncy transisto	or, Photodetector	the energy application: Li-ion bat r, Modulator, Mode locked lasers, C catalyst, Sensors, Transparent Cond	Other applica				
		LECTURE		PRACTIC	CAL	ТОТ	AL	
HOU	RS	30	0	30		6	0	
List of Exp								
	-	-	ded relevant to the five course	outcome ba	ased on	the fac	culty	
will be taug	ght and als	o feasibility.						

## **TEXT BOOK**

### Book reference

- 1. Graphene: Fundamentals, Devices, and Applications-by Serhii Shafraniuk
- 2. An Introduction to Graphene and Carbon Nanotubes-by John E. Proctor (Author), Daniel Melendrez Armada (Author), Aravind Vijayaraghavan (Author)

REFERENCES

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

## Table 1 : COs versus POs mapping

1-5 →1, 6-10 -2, 11-15 3→

0 - No relation 1- Low relation

2- Medium relation

COURSE C	CODE	XNT802B		L	Т	Р	С				
COURSE N	AME	CARBON N	IANOTUBES	2	0	1	3				
PREREQU	ISITE	Introduction	n to Nanotechnology	L	Т	Р	Н				
S	Materials Science, Nano Applications										
C:P:A		1.5:1.2:0.3		2	0	2	4				
COURSE C	OUTCO	MES		DON	IAIN	LE	VEL				
CO1			ot Of Carbon Nanotube	Cognit		Unde	erstand				
				Psycho			ember				
CO2	-		rstand Properties Of Carbon	Cognit			rstand,				
	Nanotu	bes		Psycho	omotor	Guid					
CO3	Dotory	ning And Dos	cribe Application Of Carbon	Cognit	ive	Resp	erstand,				
005	Nanotu		Cribe Application of Carbon	Psycho		Guid	,				
	Tunotu	.003		1 Syence		Set	e a				
CO4	Descri	be And Illustr	ate The Metal Nanoparticles	Cognit	ive	Unde	erstand,				
			-	Psycho	motor	Mech	nanism				
CO5	Classif	fy And <i>Descril</i>	be The Synthesis Process Of	Cognit			rstand,				
	Metal N	Nanoparticles		Psycho	omotor	Mech	nanism				
UNIT I	INTRO	DUCTION O	F CNT				6+6				
based Quantu UNIT II	m Number	ers. ERTIES OF C.	uble walled- Carbon Nanotube, ARBON NANOTUBES				6+6				
Optical Prop	erties, 12	2 14% Suggest	bility, Heat transport in Carbon red Specification table with M rties of individual Carbon Nano	larks (Theo							
UNIT III	APPLI	CATION OF	CARBON NANOTUBES				6+6				
Carbon Nand Mechanical A	tubes in application	Electronics, Canal Cana Cana	arbon Nanotubes in Energy Ap notube Sensors, Carbon Nanotul iological Applications				bes For				
UNIT IV	мета	L NANOPAR'	FICLES				6+6				
Introduction,	Size-Dep	endent Propert	ies of Metal nanoparticles, Bar les, Geometric configuration.	nd gap mea	suremen	t, Magi					
UNIT V	SYNTI	HESIS PROCE	ESS OF METAL NANOPART	ICLES			6+6				
Wet Chem	•		es, Phase Transfer Metho	od, Stabil	ization	Mecha	anisms,				
Electrochem	ical Met	hod		1	I						
		LECTURE	TUTORIAL	PRACT L	ICA	ТОТ	ſAL				
HOUR	S	30	0	30		6	0				
List of Expe	eriments										
-			ded relevant to the five course	outcome	1	.1 .6	1.				

## **TEXT BOOK**

- 1. Carbon Nanotubes: Basic Concepts and Physical Properties, Stephanie Reich, Christian Thomsen, Janina Maultzsch
- 2. Understanding Carbon Nanotubes: From Basics to Applications -English, Paperback, Annick Loiseau, Pascale Launois-bernede, Jean-paul Salvetat, Pierre Petit, Stephan Roche)
- 3. Carbon Nanotubes and Their Applications (English, Hardcover, Qing Zhang) **REFERENCES**

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 -2, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE	CODE	XNT802C	L	Т	P	С		
COURSE N	NAME	Fullerenes	2	0	1	3		
PREREQU	ISITES	Introduction to nanotechnology Materials science	L	Т	Р	Н		
C:P:A		1.5:1.2:0.3	2	0	2	4		
COURSE (	DUTCON	<b>AES</b>	DOMA	AIN	Ι	EVEL		
C01	1	the Structure of Fullerenes	Cognitive	Understand				
	_			Psychomotor				
CO2	-	and <i>understand</i> the Symmetry	Cognitive			derstand,		
	Conside	rations of Fullerene Molecules	Psychomo	otor		ided		
CO3	Dotorm	ine and Describe the Synthesis,	Cognitive			sponse derstand,		
005		on, and Purification of Fullerenes	Psychomo	otor		ided		
	Extracti	on, and I utilication of Functiones	rsycholite		Se			
CO4	Describ	e and Illustrate the Fullerene Growth,	Cognitive			derstand,		
	Contract	ion, and Fragmentation	Psychomo		Me	chanism		
CO5		and Describe the Crystalline Structure of	Cognitive			derstand,		
	Fulleren	e Solids	Psychomo	otor	Me	chanism		
UNIT I		e of Fullerenes				6+6		
		Euler's Theorem; Structure of C70 and Higher	Fullerenes;	the Pro	jectio	n Method		
for Specifyin	Ĭ							
UNIT II	•	ry Considerations of Fullerene Molecules				6+6		
Icocohodro 6								
		Operations; Symmetry of Vibrational Modes				ic States;		
Going from 1	Higher to	Lower Symmetry: Symmetry Considerations	for C70, Sy			ic States;		
Going from for Higher-M	Higher to lass Fuller	Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Ef	for C70, Syn fects			ic States; iderations		
Going from I for Higher-M UNIT III	Higher to lass Fuller Synthesi	Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Ef s, Extraction, and Purification of Fullerenes	for C70, Syn fects	mmetry	Cons	ic States; iderations 6+6		
Going from I for Higher-M UNIT III Synthesis of Sublimation	Higher to lass Fuller Synthesi Fullerenes Methods,	Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Ef <b>is, Extraction, and Purification of Fullerenes</b> : Historical Perspective, Synthesis Details; Ful Solubility of Fullerenes in Solvents; Fullere	for C70, Sy fects lerene Extrac ene Purificat	mmetry ction: Sc ion: So	Cons olvent lvent	ic States; iderations <b>6+6</b> Methods, Methods,		
Going from for Higher-M UNIT III Synthesis of Sublimation Sublimation	Higher to lass Fuller Synthesi Fullerenes Methods, in a Temp	Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Ef s, Extraction, and Purification of Fullerenes : Historical Perspective, Synthesis Details; Ful Solubility of Fullerenes in Solvents; Fullere erature Gradient, Gas-Phase Separation and P	for C70, Sy fects lerene Extrac ene Purificat	mmetry ction: Sc ion: So	Cons olvent lvent	ic States; iderations <b>6+6</b> Methods, Methods,		
Going from for Higher-M UNIT III Synthesis of Sublimation Sublimation C60; Endohe	Higher to lass Fuller Synthesi Fullerenes Methods, in a Temp dral Fuller	Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Ef s, Extraction, and Purification of Fullerenes : Historical Perspective, Synthesis Details; Ful Solubility of Fullerenes in Solvents; Fullere erature Gradient, Gas-Phase Separation and P rene Synthesis; Health and Safety Issues	for C70, Sy fects lerene Extrac ene Purificat	mmetry ction: Sc ion: So	Cons olvent lvent	ic States; iderations <b>6+6</b> Methods, Methods, Studies of		
Going from E for Higher-M UNIT III Synthesis of E Sublimation Sublimation C60; Endohe UNIT IV	Higher to lass Fuller Synthesi Fullerenes Methods, in a Temp dral Fuller Fulleren	Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Ef <b>is, Extraction, and Purification of Fullerenes</b> : Historical Perspective, Synthesis Details; Ful Solubility of Fullerenes in Solvents; Fullere erature Gradient, Gas-Phase Separation and Pr rene Synthesis; Health and Safety Issues <b>te Growth, Contraction, and Fragmentation</b>	for C70, Sy fects lerene Extrac ene Purificat urification , Y	mmetry ction: So ion: So Vaporiza	Const olvent lvent ation S	ic States; iderations <b>6+6</b> Methods, Methods, Studies of <b>6+6</b>		
Going from for Higher-M for Higher-M Synthesis of Sublimation Sublimation C60; Endohe UNIT IV Fullerene Gr Growth from Stability Issu	Higher to lass Fuller Synthesi Fullerenes Methods, in a Temp dral Fuller Fulleren rowth Moo a Corann ues; Fuller es , Collis	Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Ef <b>s, Extraction, and Purification of Fullerenes</b> : Historical Perspective, Synthesis Details; Ful Solubility of Fullerenes in Solvents; Fullere erature Gradient , Gas-Phase Separation and Perene Synthesis; Health and Safety Issues <b>e Growth, Contraction, and Fragmentation</b> dels: Stone-Wales Model ,Model for C 2 Ab ulene Cluster , Transition from C60 to C70; M ene Contraction and Fragmentation: Photo fra- ion of Fullerene Ions with Surfaces , Fragmen	for C70, Syr fects lerene Extracene Purificat urification , v sorption or fass Spectron agmentation,	mmetry ction: So ion: So Vaporiza Desorpt metry C Collisio	Const olvent lvent ation S ion , haract on of	ic States; iderations <b>6+6</b> Methods, Methods, Studies of <b>6+6</b> Fullerene terization; Fullerene		
Going from I for Higher-M UNIT III Synthesis of Sublimation Sublimation C60; Endohe UNIT IV Fullerene Gr Growth from Stability Issu Ion Projectile Molecular Dy	Higher to lass Fuller Synthesi Fullerenes Methods, in a Temp dral Fuller Fulleren rowth Moo a Corann ues; Fuller es , Collis ynamics M	Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Eff <b>is, Extraction, and Purification of Fullerenes</b> : Historical Perspective, Synthesis Details; Ful Solubility of Fullerenes in Solvents; Fullere erature Gradient , Gas-Phase Separation and Prene Synthesis; Health and Safety Issues <b>te Growth, Contraction, and Fragmentation</b> dels: Stone-Wales Model ,Model for C 2 Ab ulene Cluster , Transition from C60 to C70; M ene Contraction and Fragmentation: Photo fra ion of Fullerene Ions with Surfaces , Fragmentation Idels	for C70, Syr fects lerene Extracene Purificat urification , v sorption or fass Spectron agmentation,	mmetry ction: So ion: So Vaporiza Desorpt metry C Collisio	Const olvent lvent ation S ion , haract on of	ic States; iderations <b>6+6</b> Methods, Methods, Studies of <b>6+6</b> Fullerene etic Ions;		
Going from I for Higher-M UNIT III Synthesis of Sublimation Sublimation C60; Endohe UNIT IV Fullerene Gr Growth from Stability Issu Ion Projectile Molecular Dy UNIT V Crystalline C ,Merohedral Effect of Pr Fullerenes: F Induced Poly	Higher to Iass Fuller Synthesi Fullerenes Methods, in a Temp dral Fuller Fulleren rowth Moo a Corann res; Fuller es , Collis ynamics M Crystall C60: Ambi Disorder , ressure on Photo poly	Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Ef <b>s, Extraction, and Purification of Fullerenes</b> : Historical Perspective, Synthesis Details; Ful Solubility of Fullerenes in Solvents; Fullere erature Gradient , Gas-Phase Separation and Perene Synthesis; Health and Safety Issues <b>e Growth, Contraction, and Fragmentation</b> dels: Stone-Wales Model ,Model for C 2 Ab ulene Cluster , Transition from C60 to C70; M ene Contraction and Fragmentation: Photo fra- ion of Fullerene Ions with Surfaces , Fragmen	for C70, Syr fects lerene Extrace ene Purificat urification , sorption or fass Spectron agmentation, entation of C Phases , Lo te C70 and H on Crystal S Polymeriza	mmetry ction: So ion: So Vaporiza Desorpt metry C Collisio C60 by 2 collisio C60 by 2 collisio C60 by 2 collisio C60 by 2 collisio	Const olvent lvent ation S ion , haract on of Energ peratu lass F e; Pol C60	ic States; iderations <b>6+6</b> Methods, Methods, Studies of <b>6+6</b> Fullerene etic Ions; <b>6+6</b> re Phases ullerenes; ymerized ,Pressure-		
Going from I for Higher-M UNIT III Synthesis of Sublimation Sublimation C60; Endohe UNIT IV Fullerene Gr Growth from Stability Issu Ion Projectile Molecular D UNIT V Crystalline C ,Merohedral I Effect of Pr Fullerenes: F	Higher to lass Fuller Synthesi Fullerenes Methods, in a Temp dral Fuller Fulleren rowth Moo a Corann tes; Fuller es , Collis ynamics M Crystall C60: Ambi Disorder , ressure on Photo poly	Lower Symmetry: Symmetry Considerations enes; Symmetry Considerations for Isotopic Eff <b>is, Extraction, and Purification of Fullerenes</b> : Historical Perspective, Synthesis Details; Ful Solubility of Fullerenes in Solvents; Fullere erature Gradient , Gas-Phase Separation and Perene Synthesis; Health and Safety Issues <b>te Growth, Contraction, and Fragmentation</b> dels: Stone-Wales Model ,Model for C 2 Ab ulene Cluster , Transition from C60 to C70; Mene Contraction and Fragmentation: Photo fra- tion of Fullerene Ions with Surfaces , Fragmentation Interference <b>Solids</b> ent Structure , Group Theory for Crystalline Model for Phase Transitions in C60; Crystalline Model for Phase Transitions in C60; Crystalline Crystal Structure; Effect of Temperature of merization of C60 , Electron Beam-Induced	for C70, Syr fects lerene Extrace ene Purificat urification , sorption or fass Spectron agmentation, entation of C Phases , Lo te C70 and H on Crystal S Polymeriza	mmetry ction: So ion: So Vaporiza Desorpt metry C Collisio C60 by Structure tion of polymen	Const olvent lvent ation S ion , haract on of Energ coeratu Iass F e; Pol C60 rizatio	ic States; iderations <b>6+6</b> Methods, Methods, Studies of <b>6+6</b> Fullerene etic Ions; <b>6+6</b> re Phases ullerenes; lymerized ,Pressure-		

## List of Experiments

10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.

## **TEXT BOOK**

- 1. The Fullerenes- Author(s):H.W. Kroto, J.E. Fischer and D.E. Cox ISBN: 978-0-08-042152-0
- 2. Science of Fullerenes and Carbon Nanotubes- M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

## **Table 1: COs versus POs mapping**

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE C	ODE	XN7	<b>F802D</b>		L	Т	Р	С
COURSE N	AME	QUA	ANTUM DOT		2	0	1	3
PREREQUI	SITES				L	Т	Р	Н
C:P:A		1.5:1	1.2:0.3		2	0	2	4
COURSE O	UTCON	MES			DOMA	AIN	L	EVEL
CO1	Explai	<b>n</b> Basi	c Concept of Quant	um dots	Cognitive Psychomo		-	derstand member
CO2	<i>Explait</i> Tunnel		-	antum Mechanical	Cognitive Psychomo		Gu	derstand ided sponse
CO3	<i>Determ</i> Device	nine a	<i>und Describe</i> Sem	iconductor and	Cognitive Psychomo		derstand ided t	
CO4	Describe and Illustrate the Quantum computing         Cognitive         I							derstand chanism
CO5		Classify and Describe the Quantum DOTCognitiveUcellular AutomataPsychomotorN						
UNIT I	Introdu	uction						6+6
basic Nano el UNIT II	ectronics Quantu	s. 1m Me	chanical Tunnel I			s, Future	e, Ove	6+6
				ctronics and devices				
UNIT III Photonic De Quantum Dot	vice and	l Mat		evice, Limit of CM	IOS techno	ology-Sc	aling	6+6 Theory
UNIT IV	Quantu	ım cor	nputing					6+6
-			-	roduction, axioms, construction, axioms, con	-			on,
UNIT V	Quantu	ım DC	)T cellular Autom	ata (QCA)				6+6
Quantum DO Defect analys Reliability m	T cellula is and Re leasurem	r Auto eliabili ent in	ity: purpose of defendent of the second scale comport, Neural Netwo	ecular circuits, Nano ect analysis in nano puting. Different so rk	computing a off computin	nd Chal ng tool	lenge for 1	reliabilit
НОІ	IRS		LECTURE 30	TUTORIAL 0	PRACTION 30		1(	)TAL 60
			50	v	50			90
List of Expe 10 to 12 Exp will be taugh TEXT BOO	eriments t and als	s will t	-	nt to the five cours	e outcome ł	based or	the :	faculty

1. Quantum Dots - Theory and Applications *by Vasilios N. Stavrou*, CBS Publishers & Distributors Pvt. Ltd

2. Quantum Dots: Optics, Electron Transport and Future Applications 1st Edition by Alexander Tartakovskii.

3. Quantum Dots – A Variety of New Applications Edited by Ameenah Al-Ahmadi Published by InTech

# REFERENCES

- "Quantum -dot Devices and Quantum-dot Cellular automata" by Wolfgang Prodog, Elsevier Science.
- 2. "Electronic Transport in Quantum dot Cellular Automata", Leo P. Kouwenhoven
- 3. "Quantum-dot Cellular Automata, Theory, Experimentation and Prospects" M. Macucci
- 4. "Probabilistic Modeling of Quantum-dot Cellular Automata", Saket Rivastava, PhD dissertation
- 5. "Quantum Computation: Theory and Implementation", Edward Stuart Boyden

## .Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 -2, 11-15 3→

0 - No relation 1 - Low relation 2 - Medium relation 3 - High relation

COURSE CO	ODE	XNT802E		L	Т	Р	С		
COURSE NA			AIC CARRIERS	2	0	1	3		
PREREQUI		Materials S		L	T	P	H		
C:P:A	51115	1.5:1.2:0.3		2	0	2	4		
							-		
COURSE O		<b>n Basic Conce</b>	nt of Polymore	DOM/ Cognitive	<u>AIN</u>		EVEL		
COI	Елрии	<b>n</b> Dasie Collee	pt of Forymers	Psychomo	tor		Understand Remember		
CO2	Explai	n and under	stand Microstructure of	Cognitive			derstand,		
	polyme	r chains		Psychomotor					
							sponse		
CO3	Detern	nine and Des	cribe Mechanical properties	Cognitive	4.0.4		derstand,		
				Psychomo	tor	Se	ided t		
CO4	Descri	he and Illustr	ate the Flow properties of	Cognitive			derstand,		
001	polyme		and the Flow properties of	Psychomo	tor		chanism		
CO5	Classif	fy and <i>Describ</i>	e the Polymer Fabrication	Cognitive		Un	derstand,		
	Technic	ques		Psychomo	tor	Me	chanism		
UNIT I	Introdu	uction					6+6		
Chain transfer	reaction	. Co-polymeriz	merization mechanism. Additio ation. Polymerization by coordi d their distribution.						
UNIT II		tructure of po	-				6+6		
distances. Crys polymer chair	stallinity n. Meas	and melting. Curement of vi	mple and hindered rotation. I Blass transition. Physical states scosity. Cohesive energy der and composites.	of polymers a	nd mo	de of n	notions of		
UNIT III	Mecha	nical propertie	28				6+6		
			ity. Viscoelasticity. Creep and s bber and glassy polymers	stress relaxati	on. Dyi	namic			
UNIT IV	Flow p	roperties of po	lymer				6+6		
			shear flow. Hagen Poiselli equ Blow moulding. Compression						
UNIT V		er Fabrication	-				6+6		
Vulcanization	n of rubl		and sheet formations. Lamina						
IIAID	2	LECTURE	TUTORIAL	PRACTI	CAL	T(	OTAL		
HOURS List of Exper		30	0	30			60		
10 / 10 F		-	ded relevant to the five cours	se outcome b	ased o	n the	faculty		
will be taught		o feasibility.							
will be taught TEXT BOO	K ier Syste	ems Theories,	Methods & Applications Au	uthor(s) :Am	it K. G	oyal,	Goutam		

# Table 1 : COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

1-5 →1, 6-10 →, 11-15 3→

0 - No relation

1- Low relation

2- Medium relation

COURSE C	ODE	XNT803F		L	Т	Р	С		
COURSE N	AME	LIGNOCEI	LULOSES BIOMASS	2	0	1	3		
PREREQUI	ISITES			L	Т	Р	Н		
C:P:A				2	0	2	4		
COURSE O	UTCON	AES		DOMA	AIN	LEVEL			
CO1	-	<i>n</i> Basic structu <b>cellulose</b>	re and properties of	Cognitive Psychomo	otor		Understand Remember		
CO2	-	n and <i>unders</i> ignocellulose	stand biodiesel production	Cognitive Psychomo	Gui	derstand, ided sponse			
CO3		nine and Dese gnocellulose	cribe Bioethanol production	Cognitive Psychomo	otor		derstand, ided t		
CO4		be and Illustrations of lignoce	ate the Bio refinery	Cognitive Psychomo			derstand, chanism		
CO5	Descril	be the other cl	nemical and polymer ons of lignocellulose	Cognitive Psychomo		Un	derstand, chanism		
UNIT I		ties of Ligno					6+6		
UNIT II Biodiesel Pro Ligno cellulo			ellulosic Biomass Using Ole	eaginous Mic	robes. ]	Bio pi	<b>6+6</b> ulping of		
UNIT III	Bioeth	anol					6+6		
			roduction from Residual I igno cellulosic Fuel Produc		the Rie	ce Pr	ocessing		
UNIT IV	Biorefi	inery	2				6+6		
	0	1	Bio economy through Bio ref	•			roach for		
UNIT V	Others						6+6		
Utilization o	f Ligno c	ellulosic Bior	on for the Production of Sust mass for Bio butanol Produc omass in the Paper Industry		nicals a	and Po	olymers		
IIAIP		LECTURE	TUTORIAL	PRACTI	CAL		OTAL		
HOUR List of Expe		30	0	30			60		
	eriments	-	ded relevant to the five cour	se outcome b	based or	n the f	faculty		
<b>TEXT BOO</b> 1.A Kuila, V		a, Ligno cellu	losic Biomass Production a	nd Industria	l Appli	catior	ns, Wiley		
& Sons, 2017							2		

2. Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery *Edited by:Solange Inês Mussatto*.

3. Lignocellulosic Biomass Production and Industrial Applications Hardcover – 1 Aug 2017 by Arindam Kuila (Editor), Vinay Sharma (Editor). **REFERENCES** 

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PSO1	PSO2
CO1	1	1	1	1	2	2	2	1	1	1	1
CO2	1	1	1	1	2	2	2	1	1	1	1
CO3	1	1	1	1	2	2	2	1	1	1	1
CO4	1	1	1	1	2	2	2	1	1	1	1
CO5	1	1	1	1	2	2	2	1	1	1	1
Total	5	5	5	5	10	10	10	5	5	5	5

## Table 1 : COs versus POs mapping

1-5 →1, 6-10 →, 11-15 3→

0 - No relation 1 - Low relation 2 - Medium relation 3 - High relation

	<b>ODE</b>	XNT803		L	Т	Р	C		
COURSE N	AME	CAREER DEVELOPMENT SKILLS		0	0	1	0		
C:P:A		1:1:1		L	Т	Р	Н		
PREREQUI	ISITE			0	0	1	1		
COURSE O	UTCOME	S	Domain		Level				
CO1	••	career related communication, and he different formats of CV / Resume.	Cognitive	Ren	nemb	er			
CO2	Prepare 1	For an interview and to learn how to n interview	Psychomoto	r Set					
CO3	•	<i>communicate</i> effectively with a people in a group discussion	Affective	Res	pond				
UNIT - I	OVERVI	EW AND INTRODUCTION					10		
		between resume and CV; characteristic ume, use of graphics in resume and CV							
UNIT – II	MEMS F	ABRICATION TECHNOLOGIES					10		
etiquette and	dress code	various types of interviews. Types of in interview, interview mistakes, telep asked questions. Planning for the interv	honic intervie			guage	<b>,</b>		
UNIT - III	MICRO	SENSORS					10		
Mock intervi	ews - work	shop on CV writing – Group Discussion	on						
List of Expe	riments								
•	t and also f	ill be provided relevant to the five course as ibility.	rse outcome b	ased on	the f	acult	y		
	IUKS		tical		Tota	1			
TOTAL HC		Tutorial Prac			Total 30				
will be failgh		-	tical		Tota	1			

CO/P O	<b>PO</b> 1	PO 2	PO 3	PO 4	PO 5	PO 6	<b>PO</b> 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	1	1	1	1	2	2		1	1	1		1	1
CO2		1			2	2		1	1	1		1	1
CO3	1					2	2	1			1	1	1
CO4			1				2	1			1		
CO5	1	1	1	1	2				1	1	1	1	1
Total													

Table 1 : COs versus POs mapping

1-5  $\rightarrow$  1, 6-10  $\rightarrow$  2, 11-15  $\rightarrow$  3

0 - No relation 1 - Low relation 2 - Medium relation

COURSE (	CODE	XNT804		L	Т	Р	С
COURSE N	JAME	MEMS/NEMS		3	1	0	4
C:P:A		2:0.5:0.5		L	Т	Р	Н
PREREQU	ISITE	Physics, Chemistry and Material Scie	ence	3 2 0			5
COURSE (	OUTCOM	1ES	Domain		Lev	vel	
CO1		y to understand the operation of micro s, micro systems and their applications Psychomotor Affective Understand Remember Applying Guided respondent Organizing					
CO2	Ability	to design the migro devices migro		Unde		~	
02	•	to design the micro devices, micro using the MEMS fabrication process.	Cognitive Psychomotor Affective	Reme Appl Guide Organ	embe ying ed re	er spon	se
CO3	Gain a	knowledge of basic approaches for	Cognitive	Unde			
		Gain a knowledge of basic approaches for various sensor design Psychomote Affective					se
CO4	Gain a	knowledge of basic approaches for	Cognitive	Orga Unde			
01		actuator design	Psychomotor	Reme Appl Guide Organ	embe ying ed re	er spon	se
CO5	Develop	experience on micro/nano systems for	Cognitive	Unde			
	photonic Gain th compute and c		Psychomotor Affective	Reme Appl Guide Organ	embe ying ed re	er spon	se
UNIT - I	OVERV	<b>IEW AND INTRODUCTION</b>					9+6
New trends MEMS and Micro and N	in Engine NEMS, C Iano elect	ering and Science: Micro and Nano scale Overview of Nano and Micro electromech ro mechanical systems, Micro electrome , Materials for MEMS: Silicon, silicon c	hanical Systems chanical system	, Appl is, dev	icatio	ons o and	
UNIT – II	MEMS	FABRICATION TECHNOLOGIES					9+6
Microsysten Oxidation.T techniques: Micromachi	n fabricati hin film c Dry and v ning, Sur ; Packagin	ion processes: Photolithography, Ion Imp lepositions: LPCVD, Sputtering, Evapora vet etching, electrochemical etching; Mic face Micromachining, High Aspect-Rations ng: Microsystems packaging, Essential p	ation, Electropla cromachining: E o (LIGA and LI	ating; I Bulk GA-lik	ke)	ng	
UNIT - III	MICR	O SENSORS					9+6

	0		s, resonant sensor, Vibratory					
1			engineering mechanics behi	nd these				
Microsensors	. Case study	y: Piezo-resistive pressur	re sensor	1				
UNIT – IV	MICRO A	CTUATORS		9+6				
Design of Ac	tuators: Act	uation using thermal for	ces, Actuation using shape r	nemory Alloys,				
Actuation usi	ing piezoele	ctric crystals, Actuation	using Electrostatic forces (P	arallel plate,				
Torsion bar,	Comb drive	actuators), Micromecha	nical Motors and pumps. Ca	se study: Comb				
drive actuato	rs			·				
UNIT – V	NANOSY	STEMS AND QUANT	UM MECHANICS	9+6				
Atomic Struc	tures and Q	uantum Mechanics, Mol	ecular and Nanostructure D	ynamics:				
Shrodinger E	quation and	Wavefunction Theory,	Density Functional Theory,	Nanostructures and				
Molecular D	ynamics, Ele	ectromagnetic Fields and	their quantization, Molecul	ar Wires and				
Molecular Ci	rcuits.							
TOTAL HO	URS							
Lectu	ire	Tutorial	Practical	Total				
45		0	30	75				
<b>TEXT BOO</b>	K							
1. Marc M	ladou, "Fun	damentals of Micro fabr	ication", CRC press 1997.St	ephen D. Senturia,"				
Micro system	n Design", K	Lluwer Academic Publis	hers,2001					
REFERENC	CES:							
1. Tai Rai	n Hsu ,"ME	MS and Microsystems E	Design and Manufacture", Ta	ita Mcraw				
Hill, 2002.								
2. Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006								
3. www.tutorials point.com								

CO/P O	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	-	-	-	-	1			2	
CO4	2	1	1	1	-	_	_	_	1			2	
CO5	2	1	1	1	_	_	_	_	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	-	1			2	

# Table 1 : COs versus POs mapping

1-5  $\rightarrow$  1, 6-10  $\rightarrow$  2, 11-15  $\rightarrow$  3

0 - No relation 1 - Low relation 2 - Medium relation

COURSE C	ODE	XNT805		L	Т	Р	С	
COURSE N	AME	SURFACE PLASMON RESONANC	3	0	1	4		
C:P:A		2:0.5:0.5	L	Т	Р	Н		
PREREQUI	SITE	Physics, Chemistry and Material Scie	ence	3 0 2			5	
COURSE O	UTCON	TES	Domain					
CO1	Ability	to understand the operation of micro , micro systems and their applications	Understand Remember Applying Guided response Organizing					
CO2	•	to design the micro devices, micro s using the MEMS fabrication process.	Affective Cognitive Psychomotor Affective	Understand Remember Applying Guided response				
CO3		knowledge of basic approaches for sensor design	Cognitive Psychomotor Affective	Unde Reme Apply	Organizing Understand Remember Applying Guided response			
CO4		knowledge of basic approaches for actuator design	Cognitive Psychomotor Affective	Unde Reme Apply Guide Organ	erstar embe ying ed re	id er spon:	se	
CO5							se	
UNIT - I		FROMAGNETICS OF METALS	1				9+6	
Maxwell's E Free Electron	quations	and Electromagnetic Wave Propagation he Dispersion of the Free Electron Gas ions, The Energy of the Electromagnetic	and Volume Pla	asmon		n of	the	
UNIT – II	SURFA	ETAL/INSUL	9+6					
	-	Surface Plasmon Polaritons at a Sin and the Effective Mode Length	gle Interface, N	Aultila	yer	Syste	ems,	
UNIT - III		TATION OF SURFACE RITONS AT PLANAR INTERFACES	PLASMON	9+6				
Highly Focu	oon Char used Op	rged Particle Impact, Prism Coupling, Contical Beams, Near-Field Excitation, ventional Photonic Elements	Grating Couplin	-			-	

UNIT – IV	IMAGINO PROPAG		PLASMON	POLARITON	9+6							
Near-Field Microscopy , Fluorescence Imaging , Leakage Radiation , Scattered Light Imaging												
UNIT – V												
Normal Mod	Normal Modes of Sub-Wavelength Metal Particles, Mie Theory, Beyond the Quasi-Static											
Approximati	on and Pla	smon Lifetime, Re	al Particles:	Observations of	Particle Plasmon,							
Coupling Be	etween Loc	alized Plasmon, Vo	oid Plasmon	and Metallic Nat	noshells, Localized							
Plasmon and												
List of Expe	riments											
-	10 to 12 Experiments will be provided relevant to the five course outcome based on the faculty will be taught and also feasibility.											
		Tutorial	D.		Tatal							
Lectu	-		PI	ractical	Total							
45		0		30	75							
<b>TEXT BOO</b>	K											
<ol> <li>Marc Madou, "Fundamentals of Micro fabrication", CRC press 1997.</li> <li>3. Stephen D. Senturia," Micro system Design", Kluwer Academic Publishers,2001</li> <li>REFERENCES:</li> </ol>												
<ol> <li>Tai Ran Hsu ,"MEMS and Microsystems Design and Manufacture", Tata Mcraw Hill, 2002.</li> </ol>												
<ol> <li>Chang Liu, "Foundations of MEMS", Pearson education India limited, 2006</li> <li>www.tutorials point.com</li> </ol>												

Table 1: COs versus POs mapping

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	-	-	-	-	1			2	
CO2	2	1	1	1	-	-	-	-	1			2	
CO3	2	1	1	1	_	_	-	_	1			2	
CO4	2	1	1	1	_	-	_	_	1			2	
CO5	2	1	1	1	-	-	-	_	1			2	
Total	10	5	5	5	-	-	-	-	5			10	
	2	1	1	1	-	-	-	_	1			2	

1-5 →1, 6-10 → 2, 11-15 → 3

0 - No relation 1- Low relation

2- Medium relation